Open Access Open Access  Restricted Access Subscription Access

Computer simulation of steel ladle secondary lining layers effect on localisation and direction of thermal cracks propagation


https://doi.org/10.17073/1683-4518-2022-10-3-15

Full Text:




Abstract

A study of crack formation in refractory lining of steel ladles during molten metal pouring into the ladle has been carried out by means of mathematical modelling.

The aim of the work was to find out thermal and mechanical conditions under which cracks might initiate in lining elements and to predict the orientation and characteristic length of such cracks. Numerical investigation has been carried out using finite and discrete elements methods. Local fracture analysis was carried out with the application of criteria effectively taking into account various elementary fracture mechanisms. Typical cases are studied, in which hot layer of the lining is characterised by different mechanical constraint conditions and temperature conditions at the back surface, determined by features of the buffering and heat-insulating layers condition of the equipment lining. General patterns of crack initiation in different areas of the product under thermal shock caused by pouring molten metal into the ladle are specified. It has been identified that the presence of a temperature gradient parallel to the hot face can lead to a deviation of the crack trajectory mainly in the direction of the hot area of products. Ill. 5. Ref. 30. Tab. 1. 


About the Authors

A. S. Grigoriev
ФГБУН «Институт физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН)»
Russian Federation


S. V. Danilchenko
ООО «Группа «Магнезит»
Russian Federation


A. I. Dmitriev
ФГБУН «Институт физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН)»
Russian Federation


A V Zabolotsky
ООО «Группа «Магнезит»
Russian Federation


A. O. Migashkin
ООО «Группа «Магнезит»
Russian Federation


M. Yu. Turchin
ООО «Группа «Магнезит»
Russian Federation


V. T. Khadyev
ООО «Группа «Магнезит»
Russian Federation


E. V. Shilko
ФГБУН «Институт физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН)»
Russian Federation


References

1. Hoed, P. D. An anatomy of furnace refractory erosion: evidence from a pilot-scale facility / P. D. Hoed // 58th Electric Furnace Conference Proceedings, Orlando, Florida, USA, 12-15 November 2000. ― Warrendale, PA. : Iron & Steel Society, 2000. ― P. 361‒378.

2. Schacht, C. А. Refractory linings: thermomechanical design and applications / C. A. Schacht. ― CRC Press : Boca Raton, Florida, USA, 2019. ― 504 p. DOI: 10.1201/9780203741078.

3. Kashcheev, I. D. Study of thermal shock resistance of pulsed high-temperature equipment refractories / I. D. Kashcheev, K. G. Zemlyanoi, R. V. Dzerzhinskii, A. V. Fedotov // Refract. Ind. Ceram. ― 2016. ― Vol. 57, № 4. ― Р. 369‒372. DOI: https://doi.org/10.1007/s11148-016-9986-6. Кащеев, И. Д. Исследование термостойкости огнеупоров для импульсных высокотемпературных установок / И. Д. Кащеев, К. Г. Земляной, Р. В. Дзержинский, А. В. Федотов // Новые огнеупоры. ― 2016. ― № 7. ― С. 43‒47.

4. Zhang, L. Measurement of erosion state and refractory lining thickness of blast furnace hearth by using threedimensional laser scanning method / L. Zhang, J. Zhang, K. Jiao [et al.] // Metallurgical Research and Technology. ― 2021. ― Vol. 118. ― Article № 106. DOI: 10.1051/metal/2020085.

5. Madej, D. Detailed studies on microstructural evolution during the high temperature corrosion of SiC-containing andalusite refractories in the cement kiln preheater / D. Madej, J. Szczerba // Ceram. Int. ― 2017. ― Vol. 43. ― P. 1988‒1996. DOI: 10.1016/j.ceramint.2016.10.166.

6. Shinohara, Y. Refractories Handbook / Y. Shinohara. ― Tokyo : Japanese Association of Refractories, 1998. ― 578 p.

7. Кащеев, И. Д. Химическая технология огнеупоров / И. Д. Кащеев, К. К. Стрелов, П. С. Мамыкин. ― М. : Интермет Инжиниринг, 2007. ― 752 с.

8. Fluid catalytic cracking : handbook. Chapter 11 ― Refractory lining systems ; еd. by R. Sadeghbeigi ; 4th edition. ― Oxford : Butterworth-Heinemann, 2020. ― P. 189‒213. DOI: 10.1016/B978-0-12-812663-9.00011-4.

9. Andreev, K. Effect of binding system on the compressive behaviour of refractory mortars / K. Andreev, S. Sinnema, J. v. d. Stel [et al.] // J. Eur. Ceram. Soc. ― 2014. ― Vol. 34. ― P. 3217‒3227. DOI: 10.1016/j.jeurceramsoc.2014.04.016.

10. Andreev, K. Thermal and mechanical cyclic tests and fracture mechanics parameters as indicators of thermal shock resistance ― case study on silica refractories / K. Andreev, V. Tadaion, Q. Zhu [et al.] // J. Eur. Ceram. Soc. ― 2019. ― Vol. 39. ― P. 1650‒1659. DOI: 10.1016/j.jeurceramsoc.2018.12.062.

11. Ludwig, M. Recycled magnesia-carbon aggregate as the component of new type of MgO‒C refractories / M. Ludwig, E. Śnieżek, I. Jastrzębska [et al.] // Construction and Building Materials. ― 2021. ― Vol. 272. ― Article № 121912. DOI:10.1016/j.conbuildmat.2020.121912.

12. Gómez-Rodríguez, C. Research and development of novel refractory of MgO doped with ZrO2 nanoparticles for copper slag resistance / C. Gómez-Rodríguez, Y. Antonio-Zárate, J. Revuelta-Acosta [et al.] // Materials. ― 2021. ― Vol. 14. ― Article № 2277. DOI: 10.3390/ma14092277.

13. Andreev, K. Role of fatigue in damage development of refractories under thermal shock loads of different intensity / K. Andreev, B. Luchini, M. J. Rodrigues, J. Lino Alves // Ceram. Int. ― 2020. ― Vol. 46. ― P. 20707‒20716. DOI: 10.1016/j.ceramint.2020.04.235.

14. Andreev, K. Failure of refractory masonry material under monotonic and cyclic loading ‒ crack propagation analysis / K. Andreev, Y. Yin, B. Luchini, I. Sabirov // J. Construct. Build. Mater. ― 2021. ― Vol. 299. ― Article № 124203. DOI:10.1016/j.conbuildmat.2021.124203.

15. Stress intensity factors handbook. Vol. 2 ; еd. by Y. Murakami. ― Oxford : Pergamon Press, 1987. ― 816 p.

16. Туманов, Н. В. Моделирование устойчивого роста усталостных трещин в дисках турбин авиадвигателей при простом и сложном циклах нагружения / Н. В. Туманов, М. А. Лаврентьева, С. А. Черкасова, А. Н. Серветник // Вестник Самарского аэрокосмического университета. ― 2009. ― № 3. ― C. 188‒200.

17. Гольдштейн, Р. В. Модель хрупкого разрушения пористых материалов при сжатии / Р. В. Гольдштейн, Н. М. Осипенко // Математическое моделирование систем и процессов. ― 2009. ― № 17. ― C. 47‒58.

18. Grigoriev, A. S. Analysis of the quasi-static and dynamic fracture of the silica refractory using the mesoscale discrete element modelling / A. S. Grigoriev, A. V. Zabolotskiy, E. V. Shilko [et al.] // Materials. ― 2021. ― Vol. 14. ― Article № 7376. DOI: 10.3390/ma14237376.

19. Техническая механика: сопротивление материалов : учебник и практикум для среднего профессионального образования ; под ред. Е. Ю. Асадулиной ; 2-е изд., испр. и доп. ― М. : Юрайт, 2019. ― 265 с.

20. Марголин, Б. З. О некоторых проблемах зарождения и развития усталостных трещин в поликристал лах / Б. З. Марголин, В. А. Швецова, С. М. Балакин // Проблемы прочности. ― 2008. ― № 4. ― C. 5‒25.

21. Miller, K. J. Creep and fracture. Mechanical and thermal behaviour of metallic material / K. J. Miller ; ed. by G. Gaglioti, A. Ferro Milone. ― Amsterdam, New York, Oxford : North-Holland Publishing Company, 1982. ― P. 6‒118.

22. Kuliev, V. D. The gradient deformation criterion for brittle fracture / V. D. Kuliev, E. M. Morozov // Doklady Physics. ― 2016. ― Vol. 61. ― P. 502‒504. DOI: 10.1134/S1028335816100062.

23. Гольдштейн, Р. В. О модели структурированной среды в условиях сжатия / Р. В. Гольдштейн, Н. М. Осипенко // Механика твердого тела. ― 2010. ― № 6. ― C. 86‒97.

24. Zabolotskiy, A. V. Numerical investigation of refractory stress-strain condition under transient thermal load / A. V. Zabolotskiy, M. Y. Turchin, V. T. Khadyev, A. O. Migashkin // AIP Conference Proceedings. ― 2020. ― Vol. 2310. ― Article № 020355. DOI: 10.1063/5.0034479.

25. Psakhie, S. Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials / S. Psakhie, E. Shilko, A. Smolin [et al.] // Frattura ed Integrita Strutturale. ― 2013. ― Vol. 7, № 24. ― P. 26‒59. DOI: 10.3221/IGF-ESIS.24.04.

26. Psakhie, S. G. A mathematical model of particle‒ particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic‒ plastic materials / S. G. Psakhie, E. V. Shilko, A. S. Grigoriev [et al.] // Engineering Fracture Mechanics. ― 2014. ― Vol. 130. ― P. 96‒115. DOI: 10.1016/j.engfracmech.2014.04.034.

27. Psakhie, S. G. Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure / S. G. Psakhie, E. V. Shilko, S. Schmauder // Computational Materials Science. ― 2015. ― Vol. 102. ― P. 267‒285. DOI: 10.1016/j.commatsci.2015.02.026.

28. Lajtai, E. Z. Effect of tensile stress gradient on brittle fracture initiation / E. Z. Lajtai // International Journal of Rock Mechanics and Mining Sciences and Geomechanical Abstracts. ― 1972. ― Vol. 9. ― P. 569‒578. DOI: 10.1016/0148-9062(72)90009-5.

29. Drucker, D. C. Soil mechanics and plastic analysis for limit design / D. C. Drucker, W. Prager // Quaterly of Applied Mathematics. ― 1952. ― Vol. 10. ― P 157‒165.

30. Öztekin, E. Experimental determination of DruckerPrager yield criterion parameters for normal and high strength concretes under triaxial compression / E. Öztekin, S. Pul, M. Hüsem // Construct. Build. Mater. ― 2016. ― Vol. 112. ― P. 725‒732. DOI: 10.1016/j.conbuildmat.2016.02.127.


Supplementary files

For citation: Grigoriev A.S., Danilchenko S.V., Dmitriev A.I., Zabolotsky A.V., Migashkin A.O., Turchin M.Y., Khadyev V.T., Shilko E.V. Computer simulation of steel ladle secondary lining layers effect on localisation and direction of thermal cracks propagation. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;(10):3-15. https://doi.org/10.17073/1683-4518-2022-10-3-15

Views: 308

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)