Increasing the rate of capture of pollutants by local suction due to the use of an external swirling jet. Part 1. Research methods


https://doi.org/10.17073/1683-4518-2022-6-40-45

Full Text:




Abstract

To capture pollutants in many buildings and structures, it is necessary to use local suction systems. One of the criteria for the effectiveness of local suction ― the rate of capture of pollutants ― it is proposed to increase due to the impact of a swirling annular jet and the occurrence of a reverse air flow. The circular suction is placed coaxially in an external cylindrical casing, in which the air flow is twisted due to the tangential supply of two supply jets into the casing. A vortex dome is formed, which helps to increase the efficiency of such a vortex suction. The change in the axial velocity of air at a distance from the vortex suction was experimentally and numerically investigated for 11 structures, in each of which 4 different ratios of intake and supply air flow rates were set. In the investigated applications of the proposed suction systems, the speed increases significantly at a certain range of distance from them. A combination of designmode parameters that contribute to the highest rate of capture by vortex suction is determined. The results obtained are useful in designing effective suction systems for capturing pollutants.


About the Authors

O. N. Zaitsev
ФГАОУ ВО «Крымский федеральный университет имени В. И. Вернадского»
Russian Federation


K. I. Logachev
ФГБОУ ВО «Белгородский государственный технологический университет имени В. Г. Шухова»
Russian Federation


A. B. Gol’tsov
ФГБОУ ВО «Белгородский государственный технологический университет имени В. Г. Шухова»
Russian Federation


References

1. Посохин, В. Н. Аэродинамика вентиляции / В. Н. Посохин. ― М. : Авок-Пресс, 2008. ― 212 с.

2. Zaytsev, O. N. Processes of precession and nutation in swirling interacting gas jets / O. N. Zaytsev, N. V. Tsopa, N. A. Stepancova // IOP Conference Series: Materials Science and Engineering this link is disabled. ― 2018. ― Vol. 463, № 3. ― Article № 032053. DOI: 10.1088/1757899X/463/3/032053.

3. Logachev, I. N. Local exhaust ventilation: aerodynamic processes and calculations of dust emissions / I. N. Logachev, K. I. Logachev, O. A. Averkova. ― Boca Raton, CRC Press, 2015. ― 564 p. https://doi.org/10.1201/b18488.

4. Gonzalez, E. Influence of exhaust hood geometry on the capture efficiency of lateral exhaust and pushpull ventilation systems in surface treatment tanks / E. Gonzalez, F. Marzal, A. Minana, M. Doval // Environ. Prog. ― 2008. ― Vol. 27, № 3. ― P. 405‒411. https://doi.org/10.1002/ep.10287.

5. Chern, M. J. Numerical investigation push-pull and exhaust of turbulent diffusion in fume cupboards / M. J. Chern, W. Y. Cheng // Ann. Occup. Hyg. ― 2007. ― Vol. 51, № 6. ― P. 517‒531. https://doi.org/10.1093/annhyg/mem031.

6. Kulmala, I. Local ventilation solution for large, warm emission sources / I. Kulmala, P. Hynynen, I. Welling [et al.] // Ann. Occup. Hyg. ― 2007. ― Vol. 1, № 1. ― P. 35‒43. https://doi.org/10.1093/annhyg/mel049.

7. Iwasaki, T. Some engineering countermeasures to reduce exposure to welding fumes and gases avoiding occurrence of blow holes in welded material / T. Iwasaki, Y. Fujishiro, Y. Kubota [et al.] // Industrial Health. ― 2006. ― Vol. 43. ― P. 351‒357. https://doi.org/10.2486/indhealth.43.351.

8. Wen, X. The numerical modelling of a two-dimensional local exhaust system associated with an inclined jet flow / X. Wen, D. B. Ingham, B. Fletcher // J. Eng. Math. ― 2002. ― Vol. 43. ― P. 367‒384. https://doi.org/10.1023/A:1020328305459.

9. Kulmala, I. Experimental validation of potential and turbulent flow models for a two-dimensional jet enhanced exhaust hood / I. Kulmala // AIHAJ 61. ― 2000. ― P. 183–191. https://doi.org/ 10.1080/15298660008984527.

10. Hunt, G. R. Long range exhaustion ― a mathematical model for the axisymmetric air flow of a local exhaust ventilation hood assisted by a turbulent radial jet / G. R. Hunt, D. B. Inghamt // Ann. occq. Hyg. ― 1996. ― Vol. 40, № 2. ― P. 171‒196. https://doi.org/ 10.1016/0003-4878(95)00065-8.

11. Saunders, C. J. Jet enhanced local exhaust ventilation / C. J. Saunders, B. Fletcher // Ann. occup. Hyg. ― 1993. ― Vol. 37, № 1. ― P. 15‒24. https://doi.org/ 10.1093/annhyg/37.1.15.

12. Zhao, R. Comprehensive performance evaluation of a novel Aaberg exhaust system reinforced by a swirling jet / R. Zhao, H. Qian, L. Liu, X. Zheng // Building and Environment. ― 2020. ― Vol. 167. https://doi.org/10.1016/j.buildenv.2019.106451.

13. Wang, P. Characteristics study of the swirl air curtain exhaust hood / P. Wang, T. Feng, R. Liu // Proceedings Article published Junе 2010 in 2010 4th International Conference on Bioinformatics and Biomedical Engineering. https://doi.org/10.1109/icbbe.2010.5516594.

14. Cao, Z. Study of the vortex principle for improving the efficiency of an exhaust ventilation system / Z. Cao, Y. Wang, H. Zhu, M. Duan // Energy and Buildings. ― 2017. ― Vol. 142. ― P. 39‒48. https://doi.org/10.1016/j.enbuild.2017.03.007.

15. Yan, Y. Characterisation and analysis of indoor tornado for contaminant removal and emergency ventilation / Y. Yan, X. Li, J. Tu, P. Feng, J. Zhang // Building and Environment. ― 2019. ― Vol. 164. https://doi.org/10.1016/j.buildenv.2019.106345.

16. Cao, Z. Flow characteristics and pollutant removal effectiveness of multi-vortex ventilation in high pollution emission industrial plant with large aspect ratio / Z. Cao, C. Zhai, I. Wang, T. Zhao, H. Wang // Sustainable Cities and Society. ― 2020. ― Vol. 54. https://doi.org/10.1016/j.scs.2019.101990.

17. Кузьмин, Л. В. Вихревая вентиляция, организованная четырьмя компактными струями / Л. В. Кузьмин, А. М. Попова, А. С. Гуськов, Л. С. Дмитриева // Водоснабжение и санитарная техника. ― 1991. ― № 2. ― С. 20‒22.

18. Ивенский, В. Г. Использование воздушных вихрей для активирования открытых местных отсосов / В. Г. Ивенский // Cб. НС «Теплоснабжение и вентиляция агропромышленного комплекса». ― Ростов-на-Дону : РИСИ, 1988. ― C. 85‒92.

19. Spotar, S. Y. Focusing of the flow capture for local exhaust ventilation systems / S. Y. Spotar, A. L. Sorokin // American Journal of Applied Sciences. ― 2010. ― Vol. 7, № 6. ― P. 732‒738. https://doi.org/10.3844/ajassp.2010.732.738.

20. Gritskevich, M. S. Numerical investigation of flow near a round exhaust channel screened by an annular swirled jet / M. S. Gritskevich, A. K. Logachev, K. I. Logachev // Journal of Engineering Physics and Thermophysics. ― 2019. ― Vol. 92, № 2. ― P. 468‒476. https://doi.org/10.1007/s10891-019-01953-3.

21. Грицкевич, М. С. Численное исследование течения вблизи круглого вытяжного канала, экранированного кольцевой закрученной струей / М. С. Грицкевич, А. К. Логачев, К. И. Логачев // Инженерно-физический журнал. ― Т. 92, № 2. ― С. 487‒495.

22. Penot, F. Experimental study of non-isothermal diverging swirling and non-swirling annular jets with central aspiration / F. Penot, M. D. Pavlović // Int. J. Vent. ― 2010. ― Vol. 8, № 4. ― Р. 347‒357. https://doi.org/10.1080/14733315.2010.11683858

23. Lim, Y. B. Characteristics of ventilating flow generated by a rotating swirler in a vortex vent / Y. B. Lim, S. M. Lee, J. W. Lee // Journal of Fluids and Structures. ― 2011. ― Vol. 27, № 3. ― P. 427‒437. https://doi.org/10.1016/j.jfluidstructs.2010.11.015.


Supplementary files

For citation: Zaitsev O.N., Logachev K.I., Gol’tsov A.B. Increasing the rate of capture of pollutants by local suction due to the use of an external swirling jet. Part 1. Research methods. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;1(6):40-45. https://doi.org/10.17073/1683-4518-2022-6-40-45

Views: 206

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)