

Compaction and strengthening of ceramic-metallic materials with quadruple solid solutions of metal phases during plasma-spark sintering
https://doi.org/10.17073/1683-4518-2022-8-35-52
Abstract
The article shows the effect of mixtures of metal powders Ti, Nb, Cr, Zr, Ti and Mo, Cr, V as well as Mo, Nb, Cr, Ta during spark plasma sintering of compositions at pressing loading 70 MPa in the range 1200-1600 oC on the phase composition, microstructure, grains sizes of crystalline phases, relative density, linear shrinkage, physical-mechanical properties, linear correlation, values of standart deviations of modulus of elasticity and fracture toughness of mullite-(Ti,Ta) (C,N)-B4C-c-BN samples. Synthesized powders of TiC, TiN, B4C, h-BN are characterisized by different intensity of crystallization of TiC, TiN, B4C, h-BN phases, respectively. Sintered by spark plasma method solid solution of (Ti,Ta)(C,N) at 1500 oC shows intensive crystallization of (Ti,Ta)(C,N) phase, crystalline, uniform and densely sintered microstructure. Sintered samples with the mixtures of metal powders show similar mullitization, crystallization of (Ti,Ta)(C,N), B4C, c-BN phases with different evolution of crystalline β-Ti,Nb,Cr,Zr, β-Ti,Mo,Cr,V β-Mo,Nb,Cr,Ta phases in the range 1200-1600 oC. Microstructures of sintered samples are crystalline, different uniform and variously densely sintered. The samples with the mixtures of metal powders form variously dispersed grains compositions of crystalline phases in the range 1200-1600 oC, different uniformity, density, path and width of boundary layers of solid solution of metallic phases, different particles packing of non-oxide and solid solution of metallic phases, have different path and width of propagating microcracks at the boundaries of particles of ceramic and solid solution of metallic phases at 1300 and 1500 oC, across the boundary layers of solid solutions of metallic phases at 1500 oC. This different effects the ingrowth and the values of physical-mechanical properties, the resistance to the cracking, the linear correlation, the values of standart deviations of modulus of elasticity and fracture toughness in the range 1200-1600 oC. Ill. 20. Ref. 18. Tab. 3.
About the Author
A. V. HmelovLatvia
References
1. Jianxin D. Microstructure and mechanical properties of hot-pressed B4C/TiC/Mo ceramic composites / D. Jianxin, S. Junlong // Ceram. Int. — 2009. — Vol. 35, № 2. — P. 771-778.
2. Ehsan, G. Microstructural development during spark plasma sintering of ZrB2-SiC-Ti composite / G. Ehsan, M. Shahedi // Ceram. Int. — 2018. — Vol. 44, № 15.
3. Vedant, R. Development of ZrB2-B4C-Mo ceramic matrix composite for high temperature applications / R. Vedant, H. Parshad, P. Jain // Global J. Eng. Sci. Resear. — 2019. — Vol. 6, № 6. — P. 490-505.
4. Behzad, N. Influence of vanadium content on the characteristics of spark plasma sintered ZrB2-SiC-V composites / N. Behzad, A. Zohre, S.A. Mehdi, P. Soroush // J. All. Comp. — 2019. — Vol. 805. — P. 725-732.
5. Хмелёв, А. В. Разработка оксидно-безоксидных материалов в условиях плазменно-искрового спекания смеси без-оксидных компонентов и добавки разного порошка металла / А. В. Хмелёв // Новые огнеупоры. — 2020. — № 2. — С. 17-25.
6. Хмелёв, А. В. Разработка плотных материалов плазмен-но- искровым спеканием оксидно-безоксидных компонентов с разными смесями порошков металлов / А. В. Хмелёв // Новые огнеупоры. — 2020. — № 6. — С. 27-36.
7. Хмелёв, А. В. Разработка плотных и твердых материалов на основе оксидно-безоксидных соединений с добавками интерметаллических компонентов в ходе плазменно-искрового спекания / А. В. Хмелёв // Новые огнеупоры. — № 10. — С. 26-41.
8. Хмелёв, А. В. Стимулирование плазменно-искрового спекания смесей оксидно-безоксидных компонентов добавкой твердого раствора TaB2-NbC и через расплав никеля в смесях порошков металлов / А. В. Хмелёв // Новые огнеупоры. — 2021. — № 2. — С. 14-29.
9. Хмелёв, А. В. Разработка плотных и твердых материалов на основе оксидно-безоксидных соединений с добавками интерметаллических компонентов в ходе плазменно-искрового спекания / А. В. Хмелёв // Новые огнеупоры. — 2021. — № 10. — С. 26-41.
10. Jawed, S. F. Beta-type Ti-Nb-Cr-Zr alloys with large plasticity and significant strain hardening / S. F. Jawed, C. D. Robadia, Y. J. Liu, L. Q. Wang // Materials and design. — 2019. — Vol. 181, № 5. — P. 134-140.
11. Hu, B. Thermodynamic assessment of the Ti-Mo-Cr-V quaternary system / B. Hu, J. Wang, C. Wang, Y. Du, J. Zhu // Comp. Coumpling Phase Diag. Thermochem. — 2016. — Vol. 55, № 2. — P. 103-112.
12. Peng L. Effect of Si on the stability of NbCr2 phase in Cr-Nb-Mo system / L. Peng, S. Takizawa, T. Horiuchi, S. Miura // Intermetallics. — 2019. — Vol. 110, № 5. — P. 1-7.
13. Cheng, E. J. Rod-like eutectic structure of arc-melted TiB2-TiCxN1 - x composite / E. J. Cheng, H. Katsui, T. Goto // J. Eur. Ceram. Soc. — 2014. — Vol. 34, № 9. — P. 2089-2094.
14. Хмелёв, А. В. Получение муллит-TiC-TiN-материалов плазменно-искровым способом с высокой нагрузкой прессования и их свойства / А. В. Хмелёв // Новые огнеупоры. — 2018. — № 5. — С. 39-45.
15. Szutkowska, M. Properties of TiC and TiN reinforced aluminazirconia composites sintered with spark plasma technique / M. Szutkowska, L.-L. Jolanta, C. Jolanta // Metals. — 2019. — Vol. 9, № 11. — P. 1220-1234.
16. Naidoo M. Preparation of (Ti,Ta)(C,N) by mechanical alloying Ti(C, N) and TaC / M. Naidoo, J. Oluwagbenga, I. Sigalas, M. Herrmann // Int. J. Refract. Met. hard Mater. — 2013. — Vol. 37, № 2. — P. 67-72.
17. Naidoo, M. Preparation of (Ti, Ta)(C, N) by mechanical by alloying / M. Naidoo, J. Raethel, I. Sigalas, M. Herrmann // Int. J. Refract. Met. hard Mater. — 2012. — Vol. 35, № 1. — P. 178-185.
18. Zhang, H. Fabrication and properties of (Ti, W, Mo, Nb, Ta) (C, N)-Co-Ni cermets / H. Zhang, M. Fu, L. Ma, S. Gu, J. Liu // J. Mat. Eng. Perfor. — 2019. — Vol. 28, № 12. — P. 7198-7205.
Supplementary files
For citation: Hmelov A.V. Compaction and strengthening of ceramic-metallic materials with quadruple solid solutions of metal phases during plasma-spark sintering. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;(8):35-52. https://doi.org/10.17073/1683-4518-2022-8-35-52
Refbacks
- There are currently no refbacks.