Bulk solid state polyantimonic acid based proton conducting membranes
https://doi.org/10.17073/1683-4518-2022-2-45-50
Abstract
Bulk solid state polyantimonic acid (PAA) based proton conducting membranes were manufactured using inert polymeric binder via cold isostatic pressing. Precursor powders were obtained using the step aqueous hydrolysis of antimony pentacloride. X-Ray diffraction (XRD) data showed that hydrolysis results in the crystalline PAA with pyrochlore structure. The composition of the powder obtained via solid state synthesis corresponds to sodium antimonite having ilmenite structure. In the temperature range 293‒453 K the linear dependence of conductivity logarithm on the reverse temperature was obtained in air. Based on XRD and conductivity data the obtained solid state PAA based membranes are the prospective proton conductors having conductivity of 10‒4 S/m and activation energy of conductivity 0,395 eV. Ill. 5. Ref. 25.
About the Authors
O. Yu. KurapovaRussian Federation
A. A. Zaripov
Russian Federation
V. V. Pazheltsev
Russian Federation
A. G. Glukharev
Russian Federation
V. G. Konakov
Russian Federation
References
1. Carrette, L. Fuel cells: principles, types, fuels, and applications / L. Carrette, K. A. Friedrich, U. Stimming // ChemPhysChem. ― 2000. ― Vol. 1, № 4. ― P. 162‒193.
2. Vourros, A. Chemical reactors with high temperature proton conductors as a main component: progress in the past decade / A. Vourros, V. Kyriako, I. Garagounis [et al.] // Solid State Ionics. ― 2017. ― Vol. 306. ― P. 76‒81.
3. Nomnqa, M. Performance evaluation of a HT-PEM fuel cell micro-cogeneration system for domestic application / M. Nomnqa, D. Ikhu-Omoregbe, A. Rabiu [et al.] // Energy Syst. ― 2019. ― Vol. 10, № 1. ― P. 185‒210.
4. Peighambardoust, S. J. Review of the proton exchange membranes for fuel cell applications / S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi // Int. J. Hydrogen Energy. ― 2010. ― Vol. 35, № 17. ― P. 9349‒9384.
5. Lysova, A. A. New proton-conducting membranes based on phosphorylated polybenzimidazole and silica / A. A. Lysova, A. B. Yaroslavtsev // Inorg. Mater. ― 2019. ― Vol. 55, № 5. ― P. 470‒476.
6. Colomban, P. Proton conductors and their applications: a tentative historical overview of the early researches / P. Colomban // Solid State Ionics. ― 2019. ― Vol. 334. ― P. 125‒144.
7. Mahato, N. Progress in material selection for solid oxide fuel cell technology: a review / N. Mahato, A. Banerjee, A. Gupta [et al.] // Prog. Mater. Sci. ― 2015. ― Vol. 72. ― P. 141‒337.
8. Yaroslavtsev, A. B. Nanostructured materials for low-temperature fuel cells / A. B. Yaroslavtsev, Yu. A. Dobrovolsky. N. S. Shaglaeva [et al.] // Russ. Chem. Rev. ― 2012. ― Vol. 81, № 3. ― P. 191‒220.
9. Yu, J. Nafion/silicon oxide composite membrane for high temperature proton exchange membrane fuel cell / J. Yu, M. Pan, R. Yuan // J. Wuhan Univ. Technol. Sci. ― 2007. ― Vol. 22, № 3. ― P. 478‒481.
10. Critchley, J. P. Fluorine-containing polymers / J. P. Critchley // Heat-resistant polymers. ― Boston, MA : Springer US, 1983. ― P. 87–123.
11. Anantharamulu, N. A wide-ranging review on Nasicon type materials / N. Anantharamulu, K. Koteswara Rao, G. Rambabu [et al.] // J. Mater. Sci. ― 2011. ― Vol. 46, № 9. ― P. 2821‒2837.
12. Voropaeva, D. Y. Phase transitions and proton conductivity in hafnium hydrogen phosphate with the NASICON structure/ D. Y. Voropaeva, M. A. Moshareva, A. B. Il’inb [et al.] // Mendeleev Commun. ― 2016. ― Vol. 26, № 2. ― P. 152,153.
13. Adjemian, K. T. Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80‒140 °C/ K. T. Adjemian, S. J. Lee, S. Srinivasan [et al.] // J. Electrochem. Soc. ― 2002. ― Vol. 149, № 3. ― P. A256.
14. Gaydamaka, A. A. Phase composition, thermal and transport properties of the system based on the mono- and dihydrogen phosphates of rubidium / A. A. Gaydamaka, V. G., Ponomareva, I. N. Bagryantseva // Solid State Ionics. ― 2019. ― Vol. 329. ― P. 124‒130.
15. Ponomareva, V. G. Effect of the excess protons on the electrotansport, structural and thermodynamic properties of CsH2PO4 / V. G. Ponomareva, G. V. Lavrova // Solid State Ionics. ― 2017. ― Vol. 304. ― P. 90‒95.
16. Mathur, L. Structural and electrical properties of novel phosphate based composite electrolyte for lowtemperature fuel cells / L. Mathur, I.-H. Kim, A. Bhardwaj // Compos. Part B Eng. ― 2020. ― Vol. 202. ― P. 108405.
17. Rashid, N. L. R. M. Review on zirconate-ceratebased electrolytes for proton-conducting solid oxide fuel cell / N. L. R. M. Rashid, A. A. Samat, A. A. Jais [et al.] // Ceram. Int. ― 2019. ― Vol. 45, № 6. ― P. 6605‒6615.
18. Dixit, A. Phase transition studies of sol-gel deposited barium zirconate titanate thin films / A. Dixit, S. B. Majumder, P. S. Dobala [et al.] // Thin Solid Films.― 2004. ― Vol. 447/448. ― P. 284‒288.
19. Will, F. G. Primary sodium batteries with betaalumina solid electrolyte / F. G. Will, S. P. Mitoff // J. Electrochem. Soc. ― 1975. ― Vol. 122, № 4. ― P. 457‒461.
20. Yaroshenko, F. A. Dielectric relaxation and protonic conductivity of polyantimonic crystalline acid at low temperatures / F. A. Yaroshenko, V. A. Burmistrov // Russ. J. Electrochem. ― 2015. ― Vol. 51, № 5. ― P. 391‒396.
21. Yaroshenko, F. A. Proton conductivity of polyantimonic acid studied by impedance spectroscopy in the temperature range 370–480 K / F. A. Yaroshenko, V. A. Burmistrov // Inorg. Mater. ― 2015. ― Vol. 51, № 8. ― P. 783‒787.
22. Leysen, R. Synthesis and characterization of polyantimonic acid membranes / R. Leysen, H. Vandenborre // Mater. Res. Bull. ― 1980. ― Vol. 15, № 4. ― P. 437–450.
23. Belinskaya, F. A. Inorganic ion-exchange materials based on insoluble antimony (V) compounds / F. A. Belinskaya, E. A. Militsina // Russ. Chem. Rev. ― 1980. ― Vol. 49, № 10. ― P. 933‒952.
24. Kovalenko, L. Y. Ion exchange of H +/Na+ in polyantimonic acid, doped with vanadium ions / L. Y. Kovalenko, V. A. Burmistrov, Y. A. Lupitskaya // Pure Appl. Chem. ― 2020, № 3. ― P. 505‒514.
25. Yaroshenko, F. A. Dielectric losses and proton conductivity of polyantimonic acid membranes / F. A. Yaroshenko, V. A. Burmistrov // Russ. J. Electrochem. ― 2016. ― Vol. 52, № 7. ― P. 690‒693.
Supplementary files
For citation: Kurapova O.Y., Zaripov A.A., Pazheltsev V.V., Glukharev A.G., Konakov V.G. Bulk solid state polyantimonic acid based proton conducting membranes. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;(2):45-50. https://doi.org/10.17073/1683-4518-2022-2-45-50
Refbacks
- There are currently no refbacks.