Low temperature nanostructured ceramics on the basis of the Bi‒Pb‒Sr‒Ca‒Cu—O system received by solar technology
https://doi.org/10.17073/1683-4518-2022-2-12-17
Abstract
The relevance of the development of «melt» technologies for obtaining highly textured superconducting bulk ceramics is presented. The fundamentals of the P. J. McGinn melt method based on slow melt cooling while maintaining a flat crystallization front and energy-saving technology (Solar Fast Alloys Quenching-T) based on gradient conditions of melting and quenching of the melt are compared. The results of studying the microstructure, phase composition of precursors and superconducting ceramics with nominal compositions Bi1,7Pb0,3Sr2Can‒1CunOy (n = 9, 20) are presented. It has been determined that the resistance of homophase ceramics in the temperature range 80‒320 K is 0,004‒0,007 Ohm. Ill. 7. Ref. 19.
About the Authors
D. D. GulamovaUzbekistan
D. Jalilov
Uzbekistan
E. Eshonkulov
Uzbekistan
S. Bobokulov
Uzbekistan
T. I. Gulamov
Uzbekistan
R. M. Saidov
Uzbekistan
H. M. Bakhronov
Uzbekistan
References
1. Beddnorz, J. G. Perovskite-type oxides ― the new approach to high-Tc superconductivity / J. G. Beddnorz, K. A. Muller // Reviews of Modern Physics. ― 1988. ― Vol. 60, № 3. ― P. 585‒600.
2. Третьяков, Ю. Д. Химические принципы получения металлооксидных сверхпроводников / Ю. Д. Третьяков, Е. А. Гудилин // Успехи химии. ― 2000. ― Т. 69, вып. 1. ― С. 3‒40.
3. Третьяков, Ю. Д. Новые проблемы и решения в материаловедении керамических сверхпроводящих купратов / Ю. Д. Третьяков, П. Е. Казин // Неорганические материалы. ― 1993. ― Т. 29, № 12. ― С. 1571‒1581.
4. Chen, Н. L. 2223 рhase formation in Bi(Pb)‒Sr‒Ca‒ Cu‒O: III. Тhe role of atmosphere / Н. L. Chen, R. Stevens // J. Am. Ceram. Soc. ― 1992. ― Vol. 75, № 5. ― Р. 1160‒1166.
5. Masuda, Y. Preparation of Bi based high-Tc superconductors containing Pb and Sb by the sol-gel method / Y. Masuda, R. Ogowa, Y. Kawate, T. Tateishi, N. Hara // J. Mater. Res. ― 1992. ― Vol. 7, № 2. ― P. 292‒298.
6. Grigorashvili, Yu. E. Manufacturing technology of the (Bi,Pb)2Sr2Ca2Cu3O10 high temperature superconductors / Yu. E. Grigorashvili // Superconductors — properties technology and application. ― IntechOpen, 2012. ― 405 p.
7. McGinn, P. J. Progress in the melt texturing of RE-123 superconductors / P. J. McGinn // JOM. ― 1994. ― Vol. 46, № 12. ― P. 31‒33.
8. Abe, Y. Formation and shaping of BSCCO superconductors by melt-quenching into metallic Ag- and Cu-pipes / Y. Abe // Superconducting glass-ceramics in Bi‒ Sr‒Ca‒Cu‒O. ― World Scientific Publ., 1997. ― Р. 125‒147.
9. Gulamova, D. D. Critical temperature of the superconducting transition of individual phases of multiphase bismuth cuprates after cooling in a magnetic field to a temperature of 77 K / D. D. Gulamova, S. M. Ashimov, J. G. Chigvinadze, J. V. Acrivos // Low Temperature Physics. ― 2019. ― Vol. 45. ― P. 386‒394.
10. Chigvinadze, J. G. Superconductivity at Т ≈ 200 K in bismuth cuprates synthesized / J. G. Chigvinadze, J. V. Acrivos, S. M. Ashimov, D. D. Gulamova, G. J. Donadze // Using Solar Energy, arXiv. org> cond-mat > arXiv:1710.10430CondensedMatter > Superconductivity [Submitted on 28 Oct. 2017], https://arxiv.org/abs/1710.10430.
11. Chigvinadze, J. V. Vibrating reed study of superconducting cuprates fabricated by superfast melt quenching in a solar furnace / J. V. Chigvinadze, V. Tavkhelidze, G. I. Mamniashvili [et al.] // Engineering, Technology and Applied Sciences Research. ― 2019. ― Vol. 9, № 4. ― P. 4595‒4509.
12. Гуламова, Д. Д. Bi/Pb комнатно-температурные сверхпроводящие фазы Тс = 291‒295 К, полученные солнечной энергией / Д. Д. Гуламова, Дж. Г. Чигвинадзе, С. М. Ашимов // Химия и химическая технология. ― 2019. ― № 2. ― С. 3‒8.
13. Солнечные высокотемпературные печи: сборник переводов ; под ред. В. А. Баум. ― М. : ИЛ, 1960. ― 470 с.
14. Рискиев, Т. Т. Свойства оксидных материалов, синтезированных в солнечной печи / Т. Т. Рискиев, Д. Д. Гуламова // ДАН. ― 2014. ― № 2. ― С. 14‒19.
15. Majewski, P. Phase diagram studies in the system Bi‒Pb‒Sr‒Ca‒Cu‒O‒Ag / P. Majewski // Supercond. Sci. Technol. ― 1997. ― Vol. 10. ― P. 453‒467.
16. Michel, C. Superconductivity in the Bi‒Sr‒Cu‒O system / C. Michel, M. Hervieu, M. Borel, A. Grandin [et al.] // J. Phys. B : Condens. Matter. ― 1987. ― Vol. 68. ― P. 421‒423.
17. Sequeira, A. Zero resistivity at 122 K in Bi‒Pb‒Sr‒ Ca‒Cu‒O system / A. Sequeira, H. Rajagopal, P. V. Sastry [et al.] // PHYCE 6. ― 1991. ― Vol. 173. ― P. 267.
18. Tarascon, J. M. Preparation, structure, and properties of the superconducting compound series Bi2Sr2Can ‒ 1CunOy with n = 1, 2, and 3 / J. M. Tarascon, Y. Le Page, P. Barboux [et al.]// Phys. Rev. B. ― 1988. ― Vol. 37. ― P. 9382‒9389.
19. Polichetti, M. Third harmonics of the AC magnetic susceptibility: a method for the study of flux dynamics in high temperature superconductors / M. Polichetti, M. G. Adessoa, S. Pace // Eur. Phys. J. B. ― 2003. ― Vol. 36. ― P. 27‒36.
Supplementary files
For citation: Gulamova D.D., Jalilov D., Eshonkulov E., Bobokulov S., Gulamov T.I., Saidov R.M., Bakhronov H.M. Low temperature nanostructured ceramics on the basis of the Bi‒Pb‒Sr‒Ca‒Cu—O system received by solar technology. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;(2):12-17. https://doi.org/10.17073/1683-4518-2022-2-12-17
Refbacks
- There are currently no refbacks.