Strength and thermophysical properties of dense and porous materials based on silicon nitride
https://doi.org/10.17073/1683-4518-2022-3-45-51
Abstract
Dense materials based on Si3N4 with oxide additives activating sintering have been obtained by reaction, liquid-phase sintering and hot pressing, and their physical and mechanical properties have been determined. Porous samples were obtained by semidry forming of Si3N4 + Si workpieces followed by reactive sintering in a nitrogen atmosphere. The porosity was controlled by decreasing the silicon concentration in the initial charge. The thermal conductivity of materials is highly dependent on porosity and decreases with increasing temperature. The thermal conductivity of hot-pressed materials decreases from 60 W/(m·K) at room temperature to 35 W/(m·K) at 1200 °C. The weight gain of porous materials increases from 4·10‒3 kg/m2 with sample porosity of 32 % to 6·10‒3 kg/m2 with 56 % porosity. It is shown that the oxygen impurity is the main reason for the decrease in the thermal conductivity of Si3N4 ceramics.
About the Authors
S. N. PerevislovRussian Federation
I. E. Arlashkin
Russian Federation
O. Yu. Shcherbakova
Russian Federation
References
1. Briggs, J. Engineering ceramics in Europe and the USA / J. Briggs. ― Enceram, Menith Wood. UK : Worcester, 2011. ― 311 р.
2. Zhu, X. Post-densification behavior of reaction-bonded silicon nitride (RBSN): еffect of various characteristics of RBSN / X. Zhu, Y. Zhou, K. Hirao // J. Mater. Sci. ― 2004. ― Vol. 39, № 318. ― P. 5785‒5797. https://doi.org/10.1023/B:JMSC.0000040090.33370.66.
3. Klemm, H. Silicon nitride for high-temperature applications / H. Klemm // J. Am. Ceram. Soc. ― 2010. ― Vol. 93, № 6. ― P. 1501‒1522. https://doi.org/10.1111/j.1551-2916.2010.03839.x.
4. Becher, P. F. Observations on the influence of secondary Me oxide additives (Me = Si, Al, Mg) on the microstructural evolution and mechanical behavior of silicon nitride ceramics containing Re2O3 (Re = La, Gd, Lu) / P. F. Becher, N. Shibata, G. S. Painter [et al.] // J. Am. Ceram. Soc. ― 2010. ― Vol. 93. № 2. ― P. 570‒580. https://doi.org/10.1111/j.1551-2916.2009.03435.x.
5. Jiang, Q. G. Influence of powder characteristics on hot-pressed Si3N4 ceramics / Q. G. Jiang, W. M. Guo, W. Liu [et al.] // Sci. Sinter. ― 2017. ― Vol. 49, № 1. ― P. 81‒89. https://doi.org/0.2298/SOS1701081J.
6. Nesmelov, D. D. Reaction sintered materials based on boron carbide and silicon carbide / D. D. Nesmelov, S. N. Perevislov // Glass Ceram. ― 2015. ― Vol. 71, № 9/10. ― P. 313‒319. https://doi.org/10.1007/s10717-015-9677-7.
7. Park, J. S. Optimization of binder burnout for reaction bonded Si3N4 substrate fabrication by tape casting method / J. S. Park, H. J. Lee, S. S. Ryu [et al.] // J. Korean Ceram. ― 2015. ― Vol. 52, № 6. ― P. 435‒440. https://doi.org/10.4191/kcers.2015.52.6.435.
8. Perevislov, S. N. Sintering behavior and properties of reaction-bonded silicon nitride / S. N. Perevislov // Russ. J. Appl. Chem. ― 2021. ― Vol. 94, № 2. ― P. 143‒151. https://doi.org/10.1134/S1070427221020038.
9. Perevislov, S. N. Properties of SiC and Si3N4 based composite ceramic with nanosize component / S. N. Perevislov, D. D. Nesmelov // Glass Ceram. ― 2016. ― Vol. 73, № 7/8. ― P. 249‒252. https://doi.org/10.1007/s10717-016-9867-y.
10. Lysenkov, A. S. Silicon nitride ceramics with light-melting sintering additive in CaO‒TiO2 system / A. S. Lysenkov, S. N. Ivicheva, D. D. Titov [et al.] // IOP Conf. Series: Mater. Sci. Eng. IOP Publ. ― 2019. ― Vol. 525, № 1. ― P. 012080. https://doi.org/10.1088/1757-899X/525/1/012080.
11. Li, W. Effect of Si addition on the mechanical and thermal properties of sintered reaction bonded silicon nitride / W. Li, Y. Wu, R. Huang [et al.] // J. Eur. Ceram. Soc. ― 2017. ― Vol. 37, № 15. ― P. 4491‒4496. https://doi.org/10.1016/j.jeurceramsoc.2017.06.029.
12. Yao, D. The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics / D. Yao, Y. Xia, K. H. Zuo [et al.] // J. Eur. Ceram. Soc. ― 2014. ― Vol. 34, № 15. ― P. 3461‒3467. https://doi.org/10.1016/j.jeurceramsoc.2014.06.018.
13. Park, Y. J. Sintered reaction-bonded silicon nitrides with high thermal conductivity: the effect of the starting Si powder and Si3N4 diluents / Y. J. Park, M. J. Park, J. M. Kim [et al.] // J. Eur. Ceram. Soc. ― 2014. ― Vol. 34, № 5. ― P. 1105‒1113. https://doi.org/10.1016/j.jeurceramsoc.2013.11.040.
14. Lange, F. F. Fracture toughness of Si3N4 as a function of the initial α-phase content / F. F. Lange // J. Am. Ceram. Soc. ― 1979. ― Vol. 62, № 7/8. ― P. 428‒430. https://doi.org/10.1111/j.1151-2916.1979.tb19096.x.
15. Hwang, C. M. In Proc. Sintering‘87 / C. M. Hwang, T. Y. Tien, I.-W. Chen. ― Essex : Elsevier Applied Science Publishers, 1988. ― 1034 p.
16. Nesmelov, D. D. Precipitation of the eutectic Al2O3‒ZrO2 (Y2O3) on the surface of SiC particles / D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordan’yan [et al.] // Glass Ceram. ― 2017. ― Vol. 74, № 1. ― P. 43‒47. https://doi.org/10.1007/s10717-017-9925-0.
17. Perevislov, S. N. High density boron carbide ceramics / S. N. Perevislov, P. V. Shcherbak, M. V. Tomkovich // Refract. Ind. Ceram. ― 2018. ― Vol. 59, № 1. ― P. 32‒36. https://doi.org/10.1007/s11148-018-0178-4. [Перевислов, С. Н. Высокоплотная керамика на основе карбида бора / С. Н. Перевислов, П. В. Щербак, М. В. Томкович // Новые огнеупоры. ― 2018. ― № 1. ― С. 33‒37.]
18. Perevislov, S. N. Phase composition and microstructure of reaction-bonded boron-carbide materials / S. N. Perevislov, P. V. Shcherbak, M. V. Tomkovich // Refract. Ind. Ceram. ― 2018. ― Vol. 59, № 2. ― P. 179‒183. https://doi.org/10.1007/s11148-018-0202-8. [Перевислов, С. Н. Фазовый состав и микроструктура реакционно-связанных материалов на основе карбида бора / С. Н. Перевислов, П. В. Щербак, М. В. Томкович // Новые огнеупоры. ― 2018. ― № 4. ― С. 96‒100.]
19. Perevislov, S. N. Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent / S. N. Perevislov, I. B. Panteleev, A. P. Shevchik [et al.] // Refract. Ind. Ceram. ― 2018. ― Vol. 58, № 5. ― P. 577‒582. https://doi.org/10.1007/s11148-018-0148-x. [Перевислов, С. Н. Микроструктура и механические свойства LPSSiC-материалов с высокодисперсной спекающей добавкой / С. Н. Перевислов, И. Б. Пантелеев, А. П. Шевчик [и др.] // Новые огнеупоры. ― 2017. ― № 10. ― С. 42‒47.]
20. Zhukov, I. A. The use of intermetallic AlxMgy powder to obtain AlMgB14-based materials / I. A. Zhukov, P. Y. Nikitin, A. B. Vorozhtsov [et al.] // Materials Today Communications. ― 2020. ― Vol. 22. ― P. 100848. https://doi.org/10.1016/j.mtcomm.2019.100848.
21. Gu, J. Thermal conductivity and mechanical properties of aluminum nitride filled linear low-density polyethylene composites / J. Gu, Q. Zhang, J. Dang [et al.] // Polymer Engineering and Science. ― 2009. ― Vol. 49, № 5. ― P. 1030‒1034. https://doi.org/10.1002/pen.21336.
22. Nishi, Y. Isotope effects on thermal conductivity of boron carbide / Y. Nishi, Y. Arita, T. Matsui [et al.] // J. Nucl. Sci. Technol. ― 2002. ― Vol. 39, № 4. ― P. 391‒394. https://doi.org/10.1080/18811248.2002.9715210.
23. Перевислов, С. Н. Теплопроводность карбидо-кремниевых материалов / С. Н. Перевислов // Вопросы материаловедения. ― 2011. ― № 2. ― С. 73‒79.
24. Перевислов, С. Н. Исследование теплопроводности материалов на основе карбида и нитрида кремния / С. Н. Перевислов, М. А. Марков, Ю. А. Кузнецов [и др.] // Технология металлов. ― 2020. ― № 4. ― С. 12‒20.
25. Xu, Y. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments / Y. Xu, D. D. L. Chung // Compos. Interfaces. ― 2000. ― Vol. 7, № 4. ― P. 243‒256. https://doi.org/10.1163/156855400750244969.
26. Ryabkov, Yu. Structural design and properties of layered nanocomposite titanium carbide ‒ silicide materials / Yu. Ryabkov, P. Istomin, N. Chezhina // Mater. Phys. Mech. ― 2001. ― № 3. ― Р. 101‒107.
27. Tani, E. Gas-pressure sintering of Si3N4 with concurrent addition of Al2O3 and 5 wt. % rare earth oxide: High fracture toughness Si3N4 with fiber-like structure / E. Tani, S. Umebayashi, K. Kishi [et al.] // Am. Ceram. Soc. Bull. ― 1986. ― Vol. 65, № 9. ― P. 1311‒1315.
28. Watari, K. Effect of grain size on the thermal conductivity of Si3N4 / K. Watari, K. Hirao, M. Toriyama [et al.] // J. Am. Ceram. Soc. ― 1999. ― Vol. 82, № 3. ― P. 777‒779. https://doi.org/10.1111/j.1151-2916.1999.tb01835.x.
29. Hirosaki, N. Effect of seeding on the thermal conductivity of self-reinforced silicon nitride / N. Hirosaki, Y. Okamoto, F. Munakata [et al.] // J. Eur. Ceram. Soc. ― 1999. ― Vol. 19, № 12. ― P. 2183‒2187. https://doi.org/10.1016/S0955-2219(99)00030-8.
30. Hirao, K. High thermal conductivity silicon nitride ceramic / K. Hirao, K. Watari, H. Hayashi [et al.] // MRS Bulletin. ― 2001. ― Vol. 26, № 6. ― P. 451‒455. https:// doi.org/10.1557/mrs2001.115.
31. Argon, A. S. Mechanical properties of porous, high temperature structural materials: surces of toughness in reaction bonded silicon nitride / A. S. Argon, J. S. Haggerty. ― Massachusetts Inst. of Tech. Carbidge Dept. of mechanical engineering, 1995. ― 178 p.
32. Padture, N. P. In situ-toughened silicon carbide / N. P. Padture // J. Am. Ceram. Soc. ― 1994. ― Vol. 77, № 2. ― P. 519‒523. https://doi.org/10.1111/j.1151-2916.1994.tb07024.x.
33. Hayashi, H. MgSiN2 addition as a means of increasing the thermal conductivity of β-silicon nitride / H. Hayashi, K. Hirao, M. Toriyama [et al.] // J. Am. Ceram. Soc. ― 2001. ― Vol. 84, № 12. ― P. 3060‒3062. https://doi.org/10.1111/j.1151-2916.2001.tb01141.x.
Supplementary files
For citation: Perevislov S.N., Arlashkin I.E., Shcherbakova O.Y. Strength and thermophysical properties of dense and porous materials based on silicon nitride. NOVYE OGNEUPORY (NEW REFRACTORIES). 2022;(3):45-51. https://doi.org/10.17073/1683-4518-2022-3-45-51
Refbacks
- There are currently no refbacks.