Структура и фазовый состав керметной шихты в системе Al‒Al2O3, полученной механической обработкой алюминиевого порошка в планетарной мельнице


https://doi.org/10.17073/1683-4518-2021-6-31-38

Полный текст:




Аннотация

Керметную шихту в системе Al‒Al2O3 получали путем механической обработки (МО) в планетарной мельнице алюминиевого порошка промышленной марки ПАП-2, состоящего из чешуйчатых частиц субмикронной толщины с покрытием из стеарина. В зависимости от используемых режимов МО получали четыре шихты, насыпная плотность которых варьировалась от 0,33 до 1,1 г/см3. Во всех шихтах наблюдался синтез α-Al2O3 в результате экзотермической реакции взаимодействия кислорода воздуха с поверхностью алюминиевых частиц в процессе МО. Возможно также образование бёмита и гиббсита при взаимодействии активированной поверхности Al частиц с парами воды атмосферного воздуха. Методом локального рентгеноспектрального анализа (EDX) в шихтах зафиксирован рентгеноаморфный углерод, появление которого связано с ударно-истирающим воздействием мелющих тел, приводящим к нуклеации рентгеноаморфных включений углерода из-за термодеструкции стеарина. Максимальный предел прочности при изгибе спеченного кермета 550 МПа. Для него характерен дискретный механизм разрушения ― расслоение сдвигом слоистых пакетов под действием касательных напряжений. Выявленные механизмы разрушения керметов позволяют установить оптимальные режимы МО порошковых композиций для получения из них различных элементов конструкций.


Об авторах

Д. А. Иванов
ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)»
Россия

Д. т. н.

Москва



Г. Е. Вальяно
ФГБУН «Объединенный институт высоких температур РАН»
Россия
Москва


Т. И. Бородина
ФГБУН «Объединенный институт высоких температур РАН»
Россия
Москва


Список литературы

1. Кузмич, Ю. В. Механическое легирование / Ю. В. Кузмич, И. Г. Колесникова, В. И. Серба, Б. М. Фрейдин. ― Апатиты : Изд-во Кольского научного центра РАН, 2004. ― 179 с.

2. Черник, Г. Г. Измельчение и механическое легирование в планетарных мельницах / Г. Г. Черник, Е. Л. Фокина, Н. И. Будим [и др.] // Наноиндустрия. ― 2007. ― № 5. ― С. 32‒35.

3. Гусев, А. И. Наноматериалы, наноструктуры, нанотехнологии / А. И. Гусев. ― М. : Физматлит, 2007. ― 416 с.

4. Аксенов, А. А. Структура и свойства композиционных материалов на основе алюминия, получаемых методом механического легирования в воздушной атмосфере / А. А. Аксенов, А. Н. Солонин, В. В. ИстоминКастровский // Изв. вузов. Цветная металлургия. ― 2004. ― № 4. ― С. 58‒66.

5. Suryanarayana, C. Synthesis of nanocomposites by mechanical alloying / C. Suryanarayana // J. Alloys Compds. ― 2011. ― 509S june. ― P. S229‒S234.

6. Внуков, А. А. Особенности применения процесса механического легирования для получения порошковых шихтовых материалов на основе системы Fe‒Cu‒C / А. А. Внуков // Технологический аудит и резервы производства. ― 2015. ― № 6/1 (26). ― С. 9‒12.

7. Al-Aqeeli, N. The synthesis of nanostructured WCbased hardmetals using mechanical alloying and their direct consolidation / N. Al-Aqeeli, N. Saheb, T. Laoui, K. Mohammad // Journal of nanomaterials. ― 2014. ― February. ― P. 1‒16.

8. Поварова, К. Б. Порошковые сплавы Fe‒Cr‒Al и NiAl / К. Б. Поварова, О. А. Скачков, А. А. Дроздов [и др.] // Заготовительные производства в машиностроении. ― 2017. ― Т. 15, № 8. ― С. 370‒377.

9. Senkevich, K. S. Fabrication of intermetallic titanium alloy based on Ti2AlNb by rapid quenching of melt / K. S. Senkevich, M. M. Serov, O. Z. Umarova // Metal and heat treatment. ― 2017. ― Vol. 59, № 7/8. ― P. 463‒466.

10. Bhuyan, Ranjan K. Structural and thermal stady of Mg2TiO4 nanoparticles synthesized by mechanical alloying method / Ranjan K. Bhuyan, D. Pamu, Basanta K. Sahoo, Ashish K. Sarangi // Micro and nanosystems. ― 2020. ― Vol. 12, № 2. ― P. 87‒91.

11. Yustanti, Erlina. Surfactant ― assisted synthesis of Ba0,7Sr0,3TiO3 nanoparticles by mechanical alloying and altrasonic irradiation / Erlina Yustanti, Mas Ayu Elita Hafizah, Azwar Manaf // International conference on engineering, science and nanotechnology. ― 2016 (ICESNANO). ― P. 030119-1‒030119-4, AIP Conference Proceedings 1788, 030119 (2017).

12. Fajarin, R. Milling time and temperature dependence on Fe2TiO5 nanoparticles synthesized by mechanical alloying method / R. Fajarin, H. Purwaningsih, A.Widyastuti [et al.] // 3rd International conference on theoretical and applied physics. ― 2013 (ICTAP). ― P. 63‒66, AIP Conference Proceedings 1617, 63 (2014).

13. Liu, L. Microstructure evolution of Ti3SiC2 powder during high-energy ball milling / L. Liu, L. Wang, L. Shi, W. Jiang // Ceram. Int. ― 2010. ― Vol. 36, № 7. ― P. 2227‒2230.

14. Tasha, Mohammed A. Review on nanocomposites fabricated by mechanical alloying / Mohammed A. Tasha, Rasha A. Youness, M. E. Zawrah // International journal of minerals, metallurgy and materials. ― 2019. ― № 9. ― P. 1047‒1058.

15. Mattli, Manohar Reddy. Microstructure and compressive behavior of Al‒Y2O3 nanocomposites prepared by microwave ― assisted mechanical alloying / Manohar Reddy Mattli, R. A. Shakoor, Panchal Reddy Matli, Adel Mohamed Amer Mohamed // Metals. ― 2019. ― № 9. ― P. 414‒422.

16. Stalin, B. Synthesis of metal matrix composites and alloys by mechanical alloying: a review / B. Stalin, M. Meignanamoorthy, M. Ravichаndran // 2nd International conference on advances in mechanical engineering. ― 2018 (ICAME). ― P. 1‒5, IOP Conference series: materials science and engineering 402, 012097 (2018).

17. Jam, Ali Reza. Effect of mechanical alloying on the synthesis of Fe‒TiC nanocomposite / Ali Reza Jam, Mansour Razavi, Leila Nikzad // Science engineering composites materials. ― 2017. ― Vol. 24, № 5. ― P. 739‒745.

18. Lee, H. B. Characterization of mechanically alloyed Ti‒Al‒B nanocomposite consolidated by spark plasma sintering / H. B. Lee, S. H. Kim, S. W. Kang, Y. H. Han // British Сeramic Trans. ― 2003. ― Vol. 102, № 6. ― P. 231‒236.

19. Zhang, Guoquan. Synthesis of nanocrystalline TiC reinforced W nanocomposites by high-energy mechanical alloying: microstructural evolution and its mechanism / Guoquan Zhang, Dongdong Gu // Applied Surface Science. ― 2013. ― Vol. 273. ― February. ― P. 364‒371.

20. Alizadeh, A. Preparation and investigation of Al‒ 4 wt. % B4C nanocomposite powders using mechanical milling / A. Alizadeh, E. Taheri-Nassay, H. R. Baharvandi // Bull. Mater. Sci. ― 2011. ― Vol. 34, № 5. ― P. 1039‒1048.

21. Иванов, Д. А. Физико-химические закономерности процессов получения композиционных материалов на основе высокодисперсного алюминиевого порошка ПАП-2 / Д. А. Иванов : дис. ... д. т. н. ― М., 2019. ― 301 с.

22. Dinesh, K. Properties and characterization of Al‒ Al2O3 composites processed by casting and powder metallurgy routes (review) / K. Dinesh, A. Geeta, P. Rajesh // Intern. Jour. of latest trends in engineering and technology. ― 2013. ― Vol. 2, № 4, july. ― P. 486‒496.

23. Woo, K. D. Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder / K. D. Woo, H. B. Lee // Mater. Sci. Engn. ― 2007. ― A 449‒451. ― P. 829‒832.

24. Липсон, Г. Интерпретация порошковых рентгенограмм / Г. Липсон, Г. Стипл. ― М. : Мир, 1972. ― 384 с.

25. Ivanov, D. A. Preparation of porous ceramic based on Al2O3 as a result of zonal compaction during sintering of powder workpieces of very fine aluminum powder PAP-2 combustion products / D. A. Ivanov, A. I. Sitnikov, G. E. Val´yano [et al.] // Refract. Ind. Ceram. ― 2019. ― Vol. 59, № 5. ― P. 459‒465. (Иванов, Д. А. Получение пористой керамики на основе Al2O3 в результате зонального уплотнения при спекании порошковых заготовок из высокодисперсных продуктов сгорания алюминиевого порошка ПАП-2 / Д. А. Иванов, А. И. Ситников, Г. Е. Вальяно [и др.] // Новые огнеупоры. ― 2018. ― № 9. ― С. 28‒34.)

26. Практикум по технологии керамики и огнеупоров ; под ред. Д. Н. Полубояринова и Р. Я. Попильского. ― М. : Изд-во лит-ры по стр-ву, 1972. ― 352 с.

27. Ivanov, D. A. Investigation of physical-mechanical properties and structure of layered cermet Al‒Al2O3‒Al4C3 / D. A. Ivanov // Refract. Ind. Ceram. ― 2020. ― Vol. 61, № 4. ― P. 393‒398. (Иванов, Д. А. Изучение физико-механических свойств и структуры слоистого кермета Al‒Al2O3‒Al4C3 / Д. А. Иванов // Новые огнеупоры. ― 2020. ― № 7. ― С. 45‒50.)

28. Энгель, Л. Растровая электронная микроскопия. Разрушение / Л. Энгель, Г. Клингеле. ― М. : Металлургия, 1986. ― 232 с.


Дополнительные файлы

Для цитирования: Иванов Д.А., Вальяно Г.Е., Бородина Т.И. Структура и фазовый состав керметной шихты в системе Al‒Al2O3, полученной механической обработкой алюминиевого порошка в планетарной мельнице. Новые огнеупоры. 2021;(6):31-38. https://doi.org/10.17073/1683-4518-2021-6-31-38

For citation: Ivanov D.A., Val'yano G.E., Borodina T.I. The structure and phase composition of the cermet charge in the Al‒Al2O3 system obtained using mechanical processing of aluminum powder in a planetary ball mill. NOVYE OGNEUPORY (NEW REFRACTORIES). 2021;(6):31-38. (In Russ.) https://doi.org/10.17073/1683-4518-2021-6-31-38

Просмотров: 244

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)