LiAlO2 prepared by nitrates-free synthesis for carbon capture by MCFCs


https://doi.org/10.17073/1683-4518-2021-7-37-44

Full Text:




Abstract

The pure crystalline phase of alpha lithium aluminate, the state-of-the-art matrix support material, was directly prepared by two nitrates-free methods at 650 °C. A solgel method included pyrolysis of a colloidal mixture of aluminum hydroxide sol and lithium formate. The advantages of the used formate pyrolysis are the absence of nitrogen oxide emission in comparison to other combustion methods as well as it provides high homogeneity of a product. The solid-state reaction is a conventional method used in industry so the optimal powder-to-ball weight ratio was found in this study to give a high surface area. Described methods of synthesis are easy, economic and low-emission methods for the preparation of submicron α-LiAlO<sub>2</sub> powders with the surface area of about 25‒27 m2/g which is optimal for application as matrix material in мolten сarbonate fuel cells.

About the Authors

A. S. Tolkacheva
ФГБУН «Институт высокотемпературной электрохимии Уральского отделения Российской академии наук»; ФГАОУ ВО «Уральский федеральный университет»
Russian Federation


N. M. Porotnikova
ФГБУН «Институт высокотемпературной электрохимии Уральского отделения Российской академии наук»
Russian Federation


A. S. Farlenkov
ФГАОУ ВО «Уральский федеральный университет»
Russian Federation


E. A. Il'ina
ФГБУН «Институт высокотемпературной электрохимии Уральского отделения Российской академии наук»
Russian Federation


M. A. Konopelko
ФГБУН «Институт высокотемпературной электрохимии Уральского отделения Российской академии наук»
Russian Federation


References

1. Hepburn, C. The technological and economic prospects for CO2 utilization and removal / C. Hepburn, E. Adlen, J. Beddington [et al.] // Nature. ― 2019. ― Vol. 575. ― P. 87‒97. DOI: 10.1038/s41586-019-1681-6.

2. Pires, J. C. M. Negative emissions technologies: а complementary solution for climate change mitigation / J. C. M. Pires // Science of the Total Environment. ― 2019. ― Vol. 672. ― P. 502‒514. DOI: 10.1016/j.scitotenv.2019.04.004.

3. Spinelli, M. Assessing the potential of molten carbonate fuel cell-based schemes for carbon capture in natural gasfired combined cycle power plants / M. Spinelli, D. Di Bona, M. Gatti [et al.] // Journal of Power Sources. ― 2020. ― Vol. 448. ― Article № 227223. DOI: 10.1016/j.jpowsour.2019.227223.

4. Antolini, E. The stability of LiAlO2 powders and electrolyte matrices in molten carbonate fuel cell environment / E. Antolini // Ceram. Int. ― 2013. ― Vol. 39, № 4. ― P. 3463‒3478. DOI: 10.1016/j.ceramint.2012.10.236.

5. Isupov, V. P. Mechanochemical synthesis of fineparticle gamma-LiAlO2 / V. P. Isupov, Y. E. Trukhina, N. V. Eremina [et al.] // Inorganic Materials. ― 2016. ― Vol. 52. ― P. 1189‒1197. DOI: 10.1134/s0020168516110042.

6. Kinoshita, K. Preparation and characterization of lithium aluminate / K. Kinoshita, J. W. Sim, J. P. Ackerman // Materials Research Bulletin. ― 1978. ― Vol. 13, № 5. ― P. 445‒455. DOI: 10.1016/0025-5408(78)90152-6.

7. Kharlamova, O. A. Low-temperature synthesis of highly disperse lithium gamma-monoaluminate / O. A. Kharlamova, R. P. Mitrofanova, K. A. Tarasov [et al.] // Chemistry for Sustainable Development. ― 2004. ― Vol. 12. ― P. 379‒383.

8. Baron, R. Manufacturing of gamma-LiAlO2 matrix for molten carbonate fuel cell by high-energy milling / R. Baron, T. Wejrzanowski, J. Milewski [et al.] // International Journal of Hydrogen Energy. ― 2018. ― Vol. 43, № 13. ― P. 6696‒6700. DOI: 10.1016/j.ijhydene.2018.02.085.

9. Sokolov, S. Preparation and characterization of macroporous gamma-LiAlO2 / S. Sokolov, A. Stein // Mater. Lett. ― 2003. ― Vol. 57, № 22/23. ― P. 3593‒3597. DOI: 10.1016/s0167-577x(03)00131-9.

10. Ribeiro, R. A. The influences of heat treatment on the structural properties of lithium aluminates / R. A. Ribeiro, G. G. Silva, N. D. S. Mohallem // Journal of Physics and Chemistry of Solids. ― 2001. ― Vol. 62, № 5. ― P. 857‒864. DOI: 10.1016/s0022-3697(00)00239-0.

11. Valenzuela, M. A. Solvent effect on the sol-gel synthesis of lithium aluminate / M. A. Valenzuela, L. Tellez, P. Bosch, H. Balmori // Mater. Lett. ― 2001. ― Vol. 47, № 4/5. ― P. 252‒257. DOI: 10.1016/s0167-577x(00)00243-3.

12. Valenzuela, M. A. Sol-gel synthesis of lithium aluminate / M. A. Valenzuela, J. Jimenez-Becerril, P. Bosch [et al.] // J. Am. Ceram. Soc. ― 1996. ― Vol. 79, № 2. ― P. 455‒460. DOI: 10.1111/j.1151-2916.1996.tb08144.x.

13. Hirano, S. I. Synthesis of LiAlO2 powder by hydrolysis of metal alkoxides / S. I. Hirano, T. Hayashi, T. Kageyama // J. Am. Ceram. Soc. ― 1987. ― Vol. 70, № 3. ― P. 171‒174. DOI: 10.1111/j.1151-2916.1987.tb04953.x.

14. Li, F. Combustion synthesis of gamma-lithium aluminate by using various fuels / F. Li, K. Hu, J. L. Li [et al.] // Journal of Nuclear Materials. ― 2002. ― Vol. 300, № 1. ― P. 82‒88. DOI: 10.1016/s0022-3115(01)00710-3.

15. Kim, H. J. Alumina nanotubes containing lithium of high ion mobility / H. J. Kim, H. C. Lee, C. H. Rhee [et al.] // J. Am. Chem. Soc. ― 2003. ― Vol. 125, № 44. ― P. 13354‒13355. DOI: 10.1021/ja0374269.

16. Kang, Y. C. Preparation of submicron size gamma lithium aluminate particles from the mixture of alumina sol and lithium salt by ultrasonic spray pyrolysis / Y. C. Kang, S. B. Park, S. W. Kwon // Journal of Colloid and Interface Science. ― 1996. ― Vol. 182, № 1. ― P. 59‒62. DOI: 10.1006/jcis.1996.0436.

17. Wefers, K. Oxides and hydroxides of aluminum / K. Wefers, C. Misra. ― Alcoa Laboratories, Aluminum Company of America, Pittsburgh, 1987. ― 47 p.

18. Khlestkin, R. N. Investigation of the formats thermolysis reactions (in Russian) / R. N. Khlestkin, Ya. Kh. Valeev, R. S. Zhukov // Bashkirskii himicheskii zurnal. ― 2010. ― Vol. 17, № 2. ― P. 165‒168.

19. Samarov, A. A. Critical temperatures of isopropyl formate and isobutyl formate (in Russian) / A. A. Samarov, A. G. Nazmutdinov, T. N. Nesterova // Chemistry and Сhemical Technology. ― 2011. ― Vol. 54, № 12. ― P. 40‒42.

20. Tilley, D. B. The natural occurrence of eta-alumina (η-Al2O3) in bauxite / D. B. Tilley, R. A. Eggleton // Clays and Clay Minerals. ― 1996. ― Vol. 44. ― P. 658‒664. DOI: 10.1346/CCMN.1996.0440508.


Supplementary files

For citation: Tolkacheva A.S., Porotnikova N.M., Farlenkov A.S., Il'ina E.A., Konopelko M.A. LiAlO2 prepared by nitrates-free synthesis for carbon capture by MCFCs. NOVYE OGNEUPORY (NEW REFRACTORIES). 2021;1(7):37-44. https://doi.org/10.17073/1683-4518-2021-7-37-44

Views: 539

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)