Feasibility of alkali-activated materials as a binder for refractory castables


https://doi.org/10.17073/1683-4518-2021-7-26-32

Full Text:




Abstract

This study aims to investigate the feasibility of alkaliactivated slag as a sole binder for refractory castables. The prepared castable samples were subjected to different firing temperatures at 850,1100 and 1300 °C. The mineralogical compositions of the fired castables were  investigated using X-ray diffraction (XRD). The microstructure was examined using scanning electron microscope (SEM). Also, sintering parameters, mechanical properties as well as refractory properties in terms of permanent linear change (PLC), refractoriness under load (RUL) and thermal shock resistance (TSR) were tested. A variation in sintering parameters and mechanical properties is observed by changing firing temperatures. The geopolymer-based castables show a significant PLC only at 1300 °C, maximum expansion of 0,56 % under load and raising temperature and finally a good TSR up to 15 cycles. Phase analysis  of fired castables confirmed, besides the main phases in aggregates, the formation of low melting phases at 850 and 1100 °C. Hibonite and anorthite were obviously observed with increasing the firing temperature. A needle-shaped structure is noticed embedded in glassy matrix at 110 °C, but plat-like structure of hibonite is observed at higher temperature. Overall, the results revealed that alkaliactivated slag cement is a promising binder for refractory castables at high  temperature.

About the Authors

A. Abdel-Aziem
Центральный металлургический научно-исследовательский институт, отделение огнеупорных и керамических материалов (ООКМ); Компания Asfour for Mining and Refractories, отделение исследований и разработок
Egypt


E. Ewais
Центральный металлургический научно-исследовательский институт, отделение огнеупорных и керамических материалов (ООКМ)
Egypt


S. El-Gamal
Университет Айн-Шамс, химическое отделение, факультет естественных наук
Egypt


A. Meawad
Хелуанский университет, факультет естественных наук, кафедра химии
Egypt


References

1. Luz, A. P. Mullite-based refractory castable engineering for the petrochemical industry / A. P. Luz, A. B. Silva Neto, T. Santos [et al.] // Ceram. Int. ― 2013. ― Vol. 39, № 8. ― Р. 9063‒9070. https://doi.org/10.1016/j.ceramint.2013.05.001.

2. Singh, A. K. Nano mullite bonded refractory castable composition for high temperature applications / A. K. Singh, R. Sarkar // Ceram. Int. ― 2016. ― Vol. 42, № 11. ― Р. 12937‒12945. https://doi.org/10.1016/j.ceramint.2016.05.066.

3. Nandi, D. N. Future trends in application of monolithic refractories in the cement industry / D. N. Nandi // Trans. Indian Ceram. Soc. ― 1983. ― Vol. 42, № 6. ― P. 164‒168. https://doi.org/10.1080/0371750X.1983.10822658.

4. Nouri-Khezrabad, M. Nano-bonded refractory castables / M. Nouri-Khezrabad, M. A. L. Braulio, V. C. Pandolfelli [et al.] // Ceram. Int. ― 2013. ― Vol. 39, № 4. ― P. 3479‒3497. https://doi.org/10.1016/j.ceramint.2012.11.028.

5. Berjonneau, J. The development of a thermodynamic model for Al2O3‒MgO refractory castable corrosion by secondary metallurgy steel ladle slags / J. Berjonneau, P. Prigent, J. Poirier // Ceram. Int. ― 2009. ― Vol. 35, № 2. ― P. 623‒635. https://doi.org/10.1016/j.ceramint.2008.04.002.

6. Lee, W. E. Castable refractory concretes / W. E. Lee, W. Vieira, S. Zhang [et al.] // Int. Mater. Rev. ― 2001. ― Vol. 46, № 3. ― P. 145‒167. https://doi.org/10.1179/095066001101528439.

7. Zare, S. Improving in situ spinel refractory castables using a novel binder / S. Zare, A. Monshi, A. Saidi // Ceram. Int. ― 2016. ― Vol. 42, № 5. ― P. 5885‒5896. https://doi.org/10.1016/j.ceramint.2015.12.134.

8. Luz, A. P. MgO fumes as a potential binder for in situ spinel containing refractory castables / A. P. Luz, L. B. Consoni, C. Pagliosa [et al.] // Ceram. Int. ― 2018. ― Vol. 44, № 13. ― P. 15453‒15463. https://doi.org/10.1016/j.ceramint.2018.05.201.

9. Hossain, S. S. Waste rice husk ash derived sol: а potential binder in high alumina refractory castables as a replacement of hydraulic binder / S. S. Hossain, P. K. Roy // J. Alloys Compd. ― 2020. ― Vol. 817. https://doi.org/10.1016/j.jallcom.2019.152806.

10. Yang, S. Improved corrosion resistance of Al2O3‒ SiC‒C castables through in situ carbon containing aluminate cement as binder / S. Yang, G. Xiao, D. Ding [et al.] // Int. J. Appl. Ceram. Technol. ― 2020. ― Vol. 17, № 3. ― P. 1044‒1051. https://doi.org/10.1111/ijac.13474.

11. Davidovits, J. Geopolymers: Ceramic-like inorganic polymers / J. Davidovits // J. Ceram. Sci. Technol. ― 2017. ― Vol. 8, № 3. ― P. 335‒350. https://doi.org/10.4416/JCST2017-00038.

12. Davidovits, J. Geopolymer cements to minimize carbon dioxide greenhouse warming / J. Davidovits // Ceram. Trans. ― 1993. ― Vol. 37, № 1. ― P. 165‒182.

13. Chen, X. Method to stop geopolymer reaction / X. Chen, A. Meawad, L. J. Struble // J. Am. Ceram. Soc. ― 2014. ― Vol. 97, № 10. ― P. 3270‒3275. https://doi.org/10.1111/jace.13071.

14. Matsuda, A. Reaction, phases, and microstructure of fly ash-based alkali-activated materials / A. Matsuda, I. Maruyama, A. Meawad [et al.] // J. Adv. Concr. Technol. ― 2019. ― Vol. 17, № 3. ― P. 93‒101. https://doi.org/10.3151/jact.17.93.

15. Ma, C. Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China / C. Ma, G. Long, Y. Shi, Y. Xie // J. Clean. Prod. ― 2018. ― Vol. 201. ― P. 636‒647. https://doi.org/10.1016/j.jclepro.2018.08.060.

16. Ma, C. Properties and characterization of green one-part geopolymer activated by composite activators / C. Ma, B. Zhao, S. Guo [et al.] // J. Clean. Prod. ― 2019. ― Vol. 220. ― P. 188‒199. https://doi.org/10.1016/j.jclepro.2019.02.159.

17. Nematollahi, B. Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate / B. Nematollahi, J. Sanjayan, F. U. A. Shaikh // Ceram. Int. ― 2015. ― Vol. 41, № 4. ― P. 5696‒5704. https://doi.org/10.1016/j.ceramint.2014.12.154.

18. Worldsteel Association. Retrieved September 15, 2017 from http://www.worldsteel.org/statistics/crudesteelproduction.html. 2016 (SUPPL. 4/3).

19. Dung, N. T. Cementitious properties and microstructure of an innovative slag eco-binder / N. T. Dung, T. P. Chang, C. T. Chen, T. R. Yang // Mater. Struct. Constr. ― 2016. ― Vol. 49, № 5. ― P. 2009‒2024. https://doi.org/10.1617/s11527-015-0630-6.

20. Hung, C. C. Effect of mixture variables on durability for alkali-activated slag cementitious / C. C. Hung, Y. C. Wu, W. T. Lin [et al.] // Materials (Basel). ― 2018. ― Vol. 11, № 11. https://doi.org/10.3390/ma11112252.

21. Zhang, Q. Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials / Q. Zhang, T. Ji, Z. Yang, C. Wang, H. Wu // Constr. Build. Mater. ― 2020. ― Vol. 235. https://doi.org/10.1016/j.conbuildmat.2019.117449.

22. Zhu, G. Study on cementitious properties of steel slag / G. Zhu, Y. Hao, C. Xia [et al.] // J. Min. Metall. Sect. B. Metall. ― 2013. ― Vol. 49, № 2. ― P. 217‒224. https://doi.org/10.2298/JMMB120810006Z.

23. Qiang, W. Influence of classified steel slag with particle sizes smaller than 20 μm on the properties of cement and concrete / W. Qiang, S. Mengxiao, Y. Jun // Constr. Build. Mater. ― 2016. ― Vol. 123. ― P. 601‒610. https://doi.org/10.1016/j.conbuildmat.2016.07.042.

24. Li, Z. B. Powder characteristics and cementitious properties of steel slag used as supplementary cementitious materials / Z. B. Li, T. S. He, X. G. Zhao, S. Y. Zhao // Mater. Sci. Forum. ― 2017. ― Vol. 893 MSF. ― P. 384‒388. https://doi.org/10.4028/www.scientific.net/MSF.893.384.

25. Jiao, H. Zh. Cementitious property of NaAlO2- activated Ge slag as cement supplement / H. Zh. Jiao, S. F. Wang, A. X. Wu [et al.] // Int. J. Miner. Metall. Mater. ― 2019. ― Vol. 26, № 12. ― P. 1594‒1603. https://doi.org/10.1007/s12613-019-1901-y.

26. San-José, J. T. The performance of steel-making slag concretes in the hardened state / J. T. San-José, I. Vegas, I. Arribas, I. Marcos // Mater. Des. ― 2014. ― Vol. 60. ―P. 612‒619. https://doi.org/10.1016/j.matdes.2014.04.030.

27. Coppola, L. Electric arc furnace granulated slag for sustainable concrete / L. Coppola, A. Buoso, D. Coffetti [et al.] // Constr. Build. Mater. ― 2016. ― Vol. 123. ― P. 115‒119. https://doi.org/10.1016/j.conbuildmat.2016.06.142.

28. Wang, Q. Influence of steel slag on mechanical properties and durability of concrete / Q. Wang, P. Yan, J. Yang, B. Zhang // Constr. Build. Mater. ― 2013. ― Vol. 47. ― P. 1414‒1420. https://doi.org/10.1016/j.conbuildmat.2013.06.044.

29. Dinger, D. Particle packing. III. Discrete versus continuous particle sizes / D. Dinger, J. Funk // Interceram. ― 1992. ― Vol. 41, № 5. ― P. 332‒334.

30. ASTM C860-15. Standard Test Method for Determining the Consistency of Refractory Castable Using the Ball-In-Hand Test, ASTM International, West Conshohocken, PA, www.astm.org. 2019.

31. ASTM C20-00. Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, ASTM International, West Conshohocken, PA, www.astm.org. 2015.

32. ASTM C133-97. Standard Test Methods for Cold Crushing Strength and Modulus of Rupture of Refractories, ASTM International, West Conshohocken, PA, www.astm.org. 2015.

33. ASTM C113-14. Standard Test Method for Reheat Change of Refractory Brick, ASTM International, West Conshohocken, PA, www.astm.org. 2019.

34. ASTM C1525-18. Standard Test Method for Determination of Thermal Shock Resistance for Advanced, ASTM International, West Conshohocken, PA, 2018, www.astm.org. 2018.

35. ISO 1893:2007.Refractory products ― Determination of refractoriness under load ―Differential method with rising temperature). 1989.

36. Cheng, X. Fabrication and characterization of anorthitebased ceramic using mineral raw materials / X. Cheng, S. Ke, Q. Wang [et al.] // Ceram. Int. ― 2012. ― Vol. 38, № 4. ― P. 3227‒3235. https://doi.org/10.1016/j.ceramint.2011.12.028.

37. Capoglu, A. A novel low-clay translucent whiteware based on anorthite / A. Capoglu // J. Eur. Ceram. Soc. ― 2011. ― Vol. 31, № 3. ― P. 321‒329. https://doi.org/10.1016/j.jeurceramsoc.2010.10.004.

38. Otroj, S. Microstructure and phase evolution of alumina-spinel self-flowing refractory castables containing nano-alumina particles / S. Otroj, A. Daghighi // Ceram. Int. ― 2011. ― Vol. 37, № 3. ― P. 1003‒1009. https://doi.org/10.1016/j.ceramint.2010.11.013.

39. Kumar, P. H. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: effect of microsilica addition / P. H. Kumar, A. Srivastava, V. Kumar [et al.] // J. Asian Ceram. Soc. ― 2014. ― Vol. 2, № 2. ― P. 169‒175. https://doi.org/10.1016/j.jascer.2014.03.004.

40. Tunç, T. The effects of mechanical activation on the sintering and microstructural properties of cordierite produced from natural zeolite / T. Tunç, A. Ş. Demirkiran // Powder Technol. ― 2014. ― Vol. 260. ― P. 7‒14. https://doi.org/10.1016/j.powtec.2014.03.069.

41. Lamara, S. Effect of temperature and magnesia on phase transformation kinetics in stoichiometric and non-stoichiometric cordierite ceramics prepared from kaolinite precursors / S. Lamara, D. Redaoui, F. Sahnoune, N. Saheb // J. Therm. Anal. Calorim. ― 2019. ― Vol. 137, № 1. ― P. 11‒23. https://doi.org/10.1007/s10973-018-7923-2.

42. Feng, D. Thermal activation of albite for the synthesis of one-part mix geopolymers / D. Feng, J. L. Provis, J. S. J. Van Deventer // J. Am. Ceram. Soc. ― 2012. ― Vol. 95, № 2. ― P. 565‒572. https://doi.org/10.1111/j.1551-2916.2011.04925.x.

43. Abbasian, A. R. Effect of deflocculants on microsilica containing ultra low cement Al2O3‒SiC refractory castable / A. R. Abbasian, M. R. Rahimipour, H. Nouranian [et al.] // Ind. Ceram. ― 2010. ― Vol. 30, № 2. ― Р. 113‒119.

44. Ewais, Emad Mohamed M. Refractory castables based on SiC slab waste / Emad Mohamed M. Ewais, Nagy M. Khalil // J. Ceram.Soc.Jpn. ― 2010. ― Vol. 118, № 2. ― P. 122‒127.


Supplementary files

For citation: Abdel-Aziem A., Ewais E., El-Gamal S., Meawad A. Feasibility of alkali-activated materials as a binder for refractory castables. NOVYE OGNEUPORY (NEW REFRACTORIES). 2021;1(7):26-32. https://doi.org/10.17073/1683-4518-2021-7-26-32

Views: 247

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)