1. Luz, A. P. Mullite-based refractory castable engineering for the petrochemical industry / A. P. Luz, A. B. Silva Neto, T. Santos [et al.] // Ceram. Int. ― 2013. ― Vol. 39, № 8. ― Р. 9063‒9070. https://doi.org/10.1016/j.ceramint.2013.05.001.
2. Singh, A. K. Nano mullite bonded refractory castable composition for high temperature applications / A. K. Singh, R. Sarkar // Ceram. Int. ― 2016. ― Vol. 42, № 11. ― Р. 12937‒12945. https://doi.org/10.1016/j.ceramint.2016.05.066.
3. Nandi, D. N. Future trends in application of monolithic refractories in the cement industry / D. N. Nandi // Trans. Indian Ceram. Soc. ― 1983. ― Vol. 42, № 6. ― P. 164‒168. https://doi.org/10.1080/0371750X.1983.10822658.
4. Nouri-Khezrabad, M. Nano-bonded refractory castables / M. Nouri-Khezrabad, M. A. L. Braulio, V. C. Pandolfelli [et al.] // Ceram. Int. ― 2013. ― Vol. 39, № 4. ― P. 3479‒3497. https://doi.org/10.1016/j.ceramint.2012.11.028.
5. Berjonneau, J. The development of a thermodynamic model for Al2O3‒MgO refractory castable corrosion by secondary metallurgy steel ladle slags / J. Berjonneau, P. Prigent, J. Poirier // Ceram. Int. ― 2009. ― Vol. 35, № 2. ― P. 623‒635. https://doi.org/10.1016/j.ceramint.2008.04.002.
6. Lee, W. E. Castable refractory concretes / W. E. Lee, W. Vieira, S. Zhang [et al.] // Int. Mater. Rev. ― 2001. ― Vol. 46, № 3. ― P. 145‒167. https://doi.org/10.1179/095066001101528439.
7. Zare, S. Improving in situ spinel refractory castables using a novel binder / S. Zare, A. Monshi, A. Saidi // Ceram. Int. ― 2016. ― Vol. 42, № 5. ― P. 5885‒5896. https://doi.org/10.1016/j.ceramint.2015.12.134.
8. Luz, A. P. MgO fumes as a potential binder for in situ spinel containing refractory castables / A. P. Luz, L. B. Consoni, C. Pagliosa [et al.] // Ceram. Int. ― 2018. ― Vol. 44, № 13. ― P. 15453‒15463. https://doi.org/10.1016/j.ceramint.2018.05.201.
9. Hossain, S. S. Waste rice husk ash derived sol: а potential binder in high alumina refractory castables as a replacement of hydraulic binder / S. S. Hossain, P. K. Roy // J. Alloys Compd. ― 2020. ― Vol. 817. https://doi.org/10.1016/j.jallcom.2019.152806.
10. Yang, S. Improved corrosion resistance of Al2O3‒ SiC‒C castables through in situ carbon containing aluminate cement as binder / S. Yang, G. Xiao, D. Ding [et al.] // Int. J. Appl. Ceram. Technol. ― 2020. ― Vol. 17, № 3. ― P. 1044‒1051. https://doi.org/10.1111/ijac.13474.
11. Davidovits, J. Geopolymers: Ceramic-like inorganic polymers / J. Davidovits // J. Ceram. Sci. Technol. ― 2017. ― Vol. 8, № 3. ― P. 335‒350. https://doi.org/10.4416/JCST2017-00038.
12. Davidovits, J. Geopolymer cements to minimize carbon dioxide greenhouse warming / J. Davidovits // Ceram. Trans. ― 1993. ― Vol. 37, № 1. ― P. 165‒182.
13. Chen, X. Method to stop geopolymer reaction / X. Chen, A. Meawad, L. J. Struble // J. Am. Ceram. Soc. ― 2014. ― Vol. 97, № 10. ― P. 3270‒3275. https://doi.org/10.1111/jace.13071.
14. Matsuda, A. Reaction, phases, and microstructure of fly ash-based alkali-activated materials / A. Matsuda, I. Maruyama, A. Meawad [et al.] // J. Adv. Concr. Technol. ― 2019. ― Vol. 17, № 3. ― P. 93‒101. https://doi.org/10.3151/jact.17.93.
15. Ma, C. Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China / C. Ma, G. Long, Y. Shi, Y. Xie // J. Clean. Prod. ― 2018. ― Vol. 201. ― P. 636‒647. https://doi.org/10.1016/j.jclepro.2018.08.060.
16. Ma, C. Properties and characterization of green one-part geopolymer activated by composite activators / C. Ma, B. Zhao, S. Guo [et al.] // J. Clean. Prod. ― 2019. ― Vol. 220. ― P. 188‒199. https://doi.org/10.1016/j.jclepro.2019.02.159.
17. Nematollahi, B. Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate / B. Nematollahi, J. Sanjayan, F. U. A. Shaikh // Ceram. Int. ― 2015. ― Vol. 41, № 4. ― P. 5696‒5704. https://doi.org/10.1016/j.ceramint.2014.12.154.
18. Worldsteel Association. Retrieved September 15, 2017 from http://www.worldsteel.org/statistics/crudesteelproduction.html. 2016 (SUPPL. 4/3).
19. Dung, N. T. Cementitious properties and microstructure of an innovative slag eco-binder / N. T. Dung, T. P. Chang, C. T. Chen, T. R. Yang // Mater. Struct. Constr. ― 2016. ― Vol. 49, № 5. ― P. 2009‒2024. https://doi.org/10.1617/s11527-015-0630-6.
20. Hung, C. C. Effect of mixture variables on durability for alkali-activated slag cementitious / C. C. Hung, Y. C. Wu, W. T. Lin [et al.] // Materials (Basel). ― 2018. ― Vol. 11, № 11. https://doi.org/10.3390/ma11112252.
21. Zhang, Q. Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials / Q. Zhang, T. Ji, Z. Yang, C. Wang, H. Wu // Constr. Build. Mater. ― 2020. ― Vol. 235. https://doi.org/10.1016/j.conbuildmat.2019.117449.
22. Zhu, G. Study on cementitious properties of steel slag / G. Zhu, Y. Hao, C. Xia [et al.] // J. Min. Metall. Sect. B. Metall. ― 2013. ― Vol. 49, № 2. ― P. 217‒224. https://doi.org/10.2298/JMMB120810006Z.
23. Qiang, W. Influence of classified steel slag with particle sizes smaller than 20 μm on the properties of cement and concrete / W. Qiang, S. Mengxiao, Y. Jun // Constr. Build. Mater. ― 2016. ― Vol. 123. ― P. 601‒610. https://doi.org/10.1016/j.conbuildmat.2016.07.042.
24. Li, Z. B. Powder characteristics and cementitious properties of steel slag used as supplementary cementitious materials / Z. B. Li, T. S. He, X. G. Zhao, S. Y. Zhao // Mater. Sci. Forum. ― 2017. ― Vol. 893 MSF. ― P. 384‒388. https://doi.org/10.4028/www.scientific.net/MSF.893.384.
25. Jiao, H. Zh. Cementitious property of NaAlO2- activated Ge slag as cement supplement / H. Zh. Jiao, S. F. Wang, A. X. Wu [et al.] // Int. J. Miner. Metall. Mater. ― 2019. ― Vol. 26, № 12. ― P. 1594‒1603. https://doi.org/10.1007/s12613-019-1901-y.
26. San-José, J. T. The performance of steel-making slag concretes in the hardened state / J. T. San-José, I. Vegas, I. Arribas, I. Marcos // Mater. Des. ― 2014. ― Vol. 60. ―P. 612‒619. https://doi.org/10.1016/j.matdes.2014.04.030.
27. Coppola, L. Electric arc furnace granulated slag for sustainable concrete / L. Coppola, A. Buoso, D. Coffetti [et al.] // Constr. Build. Mater. ― 2016. ― Vol. 123. ― P. 115‒119. https://doi.org/10.1016/j.conbuildmat.2016.06.142.
28. Wang, Q. Influence of steel slag on mechanical properties and durability of concrete / Q. Wang, P. Yan, J. Yang, B. Zhang // Constr. Build. Mater. ― 2013. ― Vol. 47. ― P. 1414‒1420. https://doi.org/10.1016/j.conbuildmat.2013.06.044.
29. Dinger, D. Particle packing. III. Discrete versus continuous particle sizes / D. Dinger, J. Funk // Interceram. ― 1992. ― Vol. 41, № 5. ― P. 332‒334.
30. ASTM C860-15. Standard Test Method for Determining the Consistency of Refractory Castable Using the Ball-In-Hand Test, ASTM International, West Conshohocken, PA, http://www.astm.org. 2019.
31. ASTM C20-00. Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, ASTM International, West Conshohocken, PA, http://www.astm.org. 2015.
32. ASTM C133-97. Standard Test Methods for Cold Crushing Strength and Modulus of Rupture of Refractories, ASTM International, West Conshohocken, PA, http://www.astm.org. 2015.
33. ASTM C113-14. Standard Test Method for Reheat Change of Refractory Brick, ASTM International, West Conshohocken, PA, http://www.astm.org. 2019.
34. ASTM C1525-18. Standard Test Method for Determination of Thermal Shock Resistance for Advanced, ASTM International, West Conshohocken, PA, 2018, http://www.astm.org. 2018.
35. ISO 1893:2007.Refractory products ― Determination of refractoriness under load ―Differential method with rising temperature). 1989.
36. Cheng, X. Fabrication and characterization of anorthitebased ceramic using mineral raw materials / X. Cheng, S. Ke, Q. Wang [et al.] // Ceram. Int. ― 2012. ― Vol. 38, № 4. ― P. 3227‒3235. https://doi.org/10.1016/j.ceramint.2011.12.028.
37. Capoglu, A. A novel low-clay translucent whiteware based on anorthite / A. Capoglu // J. Eur. Ceram. Soc. ― 2011. ― Vol. 31, № 3. ― P. 321‒329. https://doi.org/10.1016/j.jeurceramsoc.2010.10.004.
38. Otroj, S. Microstructure and phase evolution of alumina-spinel self-flowing refractory castables containing nano-alumina particles / S. Otroj, A. Daghighi // Ceram. Int. ― 2011. ― Vol. 37, № 3. ― P. 1003‒1009. https://doi.org/10.1016/j.ceramint.2010.11.013.
39. Kumar, P. H. Implementation of industrial waste ferrochrome slag in conventional and low cement castables: effect of microsilica addition / P. H. Kumar, A. Srivastava, V. Kumar [et al.] // J. Asian Ceram. Soc. ― 2014. ― Vol. 2, № 2. ― P. 169‒175. https://doi.org/10.1016/j.jascer.2014.03.004.
40. Tunç, T. The effects of mechanical activation on the sintering and microstructural properties of cordierite produced from natural zeolite / T. Tunç, A. Ş. Demirkiran // Powder Technol. ― 2014. ― Vol. 260. ― P. 7‒14. https://doi.org/10.1016/j.powtec.2014.03.069.
41. Lamara, S. Effect of temperature and magnesia on phase transformation kinetics in stoichiometric and non-stoichiometric cordierite ceramics prepared from kaolinite precursors / S. Lamara, D. Redaoui, F. Sahnoune, N. Saheb // J. Therm. Anal. Calorim. ― 2019. ― Vol. 137, № 1. ― P. 11‒23. https://doi.org/10.1007/s10973-018-7923-2.
42. Feng, D. Thermal activation of albite for the synthesis of one-part mix geopolymers / D. Feng, J. L. Provis, J. S. J. Van Deventer // J. Am. Ceram. Soc. ― 2012. ― Vol. 95, № 2. ― P. 565‒572. https://doi.org/10.1111/j.1551-2916.2011.04925.x.
43. Abbasian, A. R. Effect of deflocculants on microsilica containing ultra low cement Al2O3‒SiC refractory castable / A. R. Abbasian, M. R. Rahimipour, H. Nouranian [et al.] // Ind. Ceram. ― 2010. ― Vol. 30, № 2. ― Р. 113‒119.
44. Ewais, Emad Mohamed M. Refractory castables based on SiC slab waste / Emad Mohamed M. Ewais, Nagy M. Khalil // J. Ceram.Soc.Jpn. ― 2010. ― Vol. 118, № 2. ― P. 122‒127.