Structure and mechanical properties of hot- pressed composite ceramics W2B5‒ZrB2‒SiC‒B4C


https://doi.org/10.17073/1683-4518-2021-4-27-33

Full Text:




Abstract

A high-density ceramic material (97 % of theoretical density) was obtained by hot pressing of ball-milled powders W2B5, ZrB2, SiC and B4C with holding for 15 minutes at a temperature of 1850 °C and a pressure of 30 MPa in an argon atmosphere. The structure and composition of material were investigated by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Vickers hardness (19,3 GPa), crack resistance coefficient (5,7 MPa·m1/2) and bending strength (695 MPa) were determined.

About the Authors

D. D. Nesmelov
Saint Petersburg State Institute of Technology
Russian Federation


S. S. Ordan’yan
Saint Petersburg State Institute of Technology
Russian Federation


Yu. P. Udalov
Saint Petersburg State Institute of Technology
Russian Federation


References

1. Akopov, G. Perspective: superhard metal borides: a look forward / G. Akopov, L. E. Pangilinan, R. Mohammadi [et al.] // APL Materials. ― 2018. ― Vol. 6, № 7. ― P. 070901.

2. Ordanyan, S. S. Nonoxide high-melting point compounds as materials for extreme conditions / S. S. Ordanyan, S. V. Vikhman, D. D. Nesmelov [et al.] // Advances in Science and Technology. ― 2014. ― Vol. 89. ― P. 47‒56.

3. Ordanyan, S. S. Revisiting the structure of SiC‒B4C‒MedB2 systems and prospects for the development of composite ceramic materials based on them / S. S. Ordanyan, D. D. Nesmelov, D. P. Danilovich, Yu. P. Udalov // Russian Journal of Non-Ferrous Metals. ― 2017. ― Vol. 58, № 5. ― P. 545‒551. [Орданьян, С. С. О строении систем SiC‒B4C‒MedB2 и перспективах создания композиционных керамических материалов на их основе / С. С. Орданьян, Д. Д. Несмелов, Д. П. Данилович, Ю. П. Удалов // Известия вузов. Порошковая металлургия и функциональные покрытия. ― 2016. ― № 4. ― С. 41‒50.]

4. Zhang, H. Pressureless sintering of ZrB2‒SiC ceramics: the effect of B4C content / H. Zhang, Y. Yan, Z. Huang [et al.] // Scripta Mater. ― 2009. ― Vol. 60, № 7. ― P. 559‒562.

5. Zhang S. C. Pressureless sintering of ZrB2‒SiC ceramics / S. C. Zhang, G. E. Hilmas, W. G. Fahrenholtz // J. Am. Ceram. Soc. ― 2008. ― Vol. 91, № 1. ― P. 26‒32.

6. Nayebi, B. Influence of vanadium content on the characteristics of spark plasma sintered ZrB2‒SiC‒V composites / B. Nayebi, Z. Ahmadi, M. S. Asl [et al.] // J. Alloys Compd. ― 2019. ― Vol. 805. ― P. 725‒732.

7. Watts, J. Mechanical characterization of ZrB2‒SiC composites with varying SiC particle sizes / J. Watts, G. Hilmas, W. G. Fahrenholtz // J. Am. Ceram. Soc. ― 2011. ― Vol. 94, № 12. ― P. 4410‒4418.

8. Monteverde, F. Ultra-high temperature HfB2‒SiC ceramics consolidated by hot-pressing and spark plasma sintering / F. Monteverde // J. Alloys Compds. ― 2007. ― Vol. 428, № 1/2. ― P. 197‒205.

9. Monteverde, F. Microstructure and properties of an HfB2‒SiC composite for ultra high temperature applications / F. Monteverde, A. Bellosi // Advanced Engineering Materials. ― 2004. ― Vol. 6, № 5. ― P. 331‒336.

10. Licheri, R. Synthesis, densification and characterization of TaB2‒SiC composites / R. Licheri, R. Orrù, C. Musa [et al.] // Ceram. Int. ― 2010. ― Vol. 36, № 3. ― P. 937‒941.

11. Zhang, H. A novel microstructural design to improve the oxidation resistance of ZrB2‒SiC ultra-high temperature ceramics (UHTCs) / H. Zhang, D. D. Jayaseelan, I. Bogomol [et al.] // J. Alloys Compds. ― 2019. ― Vol. 785. ― P. 958-964.

12. Yamada, S. Sintering behavior of B4C‒CrB2 ceramics / S. Yamada, K. Hirao, Y. Yamauchi, S. Kanzaki // Journal of Materials Science Letters. ― 2002. ― Vol. 21, № 18. ― P. 1445‒1447.

13. Yamada, S. Densification behaviour and mechanical properties of pressureless-sintered B4C‒CrB2 ceramics / S. Yamada, K. Hirao, Y. Yamauchi, S. Kanzaki // Journal of Materials Science. ― 2002. ― Vol. 37, № 23. ― P. 5007‒5012.

14. Yamada, S. B4C‒CrB2 composites with improved mechanical properties / S. Yamada, K. Hirao, Y. Yamauchi, S. Kanzaki // J. Eur. Ceram. Soc. ― 2003. ― Vol. 23, № 3. ― P. 561‒565.

15. Li, X. Pressureless sintering of boron carbide with Cr3C2 as sintering additive / X. Li, D. Jiang, J. Zhang [et al.] // J. Eur. Ceram. Soc. ― 2014. ― Vol. 34, № 5. ― P. 1073‒1081.

16. Demirskyi, D. In situ fabrication of B4C‒NbB2 eutectic composites by spark–plasma sintering / D. Demirskyi, Y. Sakka // J. Am. Ceram. Soc. ― 2014. ― Vol. 97, № 8. ― P. 2376‒2378.

17. Demirskyi, D. Fabrication, microstructure and properties of in situ synthesized B4C‒NbB2 eutectic composites by spark plasma sintering / D. Demirskyi, Y. Sakka // Journal of the Ceramic Society of Japan. ― 2015. ― Vol. 123, № 1433. ― P. 33‒37.

18. Demirskyi, D. High-strength B4C‒TaB2 eutectic composites obtained via in situ by spark plasma sintering / D. Demirskyi, Y. Sakka, O. Vasylkiv // J. Am. Ceram. Soc. ― 2016. ― Vol. 99, № 7. ― P. 2436‒2441.

19. Radev, D. D. Pressureless sintering of boron carbide-based superhard materials / D. D. Radev // Solid State Phenomena. ― Trans Tech Publications Ltd, 2010. ― Vol. 159. ― P. 145‒148.

20. Radev, D. Synthesis of boron carbide by reactive-pulsed electric current sintering in the presence of tungsten boride / D. Radev, I. Avramova, D. Kovacheva [et al.] // Int. J. Applied Ceram. Technol. ― 2016. ― Vol. 13, № 6. ― P. 997‒1007.

21. Grigor’ev, O. N. Synthesis and properties of ceramics in the SiC‒B4C‒MeB2 system / O. N. Grigor’ev, G. A. Gogotsi, Y. G. Gogotsi [et al.] // Powder Metallurgy and Metal Ceramics. ― 2000. ― Vol. 39, № 5/6. ― С. 239‒250.

22. Udalov, Yu. P. Preparation and abrasive properties of eutectic compositions in the system B4C‒SiC‒TiB2 / Yu. P. Udalov, E. E. Valova, S. S. Ordan'yan // Refractories. ― 1995. ― Vol. 36, № 8. ― P. 233, 234. [Удалов, Ю. П. Получение и абразивные свойства эвтектических композиций в системе B4C‒SiC‒TiB2 / Ю. П. Удалов, Е. Е. Валова, С. С. Орданьян // Огнеупоры. ― 1995. ― № 8. ― С. 2, 3.]

23. Li, W. J. Preparation of directionally solidified B4C‒TiB2‒SiC ternary eutectic composites by a floating zone method and their properties / W. J. Li, R. Tu, T. Goto // Materials transactions. ― 2005. ― Vol. 46, № 9. ― P. 2067‒2072.

24. Chalgin, A. V. Principles of technology and mechanical properties of structural ceramics based on the ternary system SiC‒B4C‒CrB2 / A. V. Chalgin, S. V. Vikhman, S. S. Ordan’yan [et al.] // MRS Proceedings. Cambridge University Press. ― 2015. ― Vol. 1765. ― imrc2014 s4a-o015.

25. Kotsar’, T. V. Combined carbothermal synthesis of powders in the B4C‒SiC‒TiB2 system / T. V. Kotsar’, D. P. Danilovich, S. S. Ordan’yan [et al.] // Refract. Ind. Ceram. ― 2017. ― Vol. 58, № 2. ― P. 174‒178. [Коцарь, Т. В. Совместный карботермический синтез порошков в системе B4C‒SiC‒TiB2 / Т. В. Коцарь, Д. П. Данилович, С. С. Орданьян [и др.] // Новые огнеупоры. ― 2017. ― № 3. ― С. 139‒143.]

26. Kotsar, T. V. Glass-ceramic precursors in B2O3‒SiO2‒MxOy systems (M ― Ti, Zr, Cr) as a source for producing fine-dispersed mixtures of high-melting carbides and borides / T. V. Kotsar, D. P. Danilovich, S. S. Ordan’yan // Refract. Ind. Ceram. ― 2020. ― Vol. 61, № 1. ― P. 100‒105. [Коцарь Т. В. Стеклокристаллические прекурсоры в системах B2O3‒SiO2‒MxOy, где M ― Ti, Zr, Cr, как источник получения высокодисперсных смесей тугоплавких карбидов и боридов / Т. В. Коцарь, Д. П. Данилович, С. С. Орданьян // Новые огнеупоры. ― 2020. ― № 2. ― С. 46‒51.]27. Yin, S. P. Spark plasma sintering of B4C‒TiB2‒SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials / S. P. Yin, Z. H. Zhang, X. W. Cheng [et al.] // Ceram. Int. ― 2018. ― Vol. 44, № 17. ― P. 21626‒21632.

27. Zhang, X. Microstructure and mechanical properties of B4C‒TiB2‒SiC composites toughened by composite structural toughening phases / X. Zhang, Z. Zhang, W. Wang [et al.] // J. Am. Ceram. Soc. ― 2017. ― Vol. 100, № 7. ― P. 3099‒3107.

28. He, Q. Microstructures and mechanical properties of B4C‒TiB2‒SiC composites fabricated by ball milling and hot pressing / Q. He, A. Wang, C. Liu [et al.] // J. Eur. Ceram. Soc. ― 2018. ― Vol. 38, № 7. ― P. 2832‒2840.

29. Zhang, X. High-performance B4C‒TiB2‒SiC composites with tuneable properties fabricated by reactive hot pressing / X. Zhang, Z. Zhang, Y. Liu [et al.] // J. Eur. Ceram. Soc. ― 2019. ― Vol. 39, № 10. ― P. 2995‒3002.

30. Liu, Y. Microstructure and mechanical properties of B4C‒TiB2‒SiC composites fabricated by spark plasma sintering / Y. Liu, X. Wu, M. Liu [et al.] // Ceram. Int. ― 2020. ― Vol. 46, № 3. ― P. 3793‒3800.

31. Tu, R. Microstructure and mechanical properties of B4C‒HfB2‒SiC ternary eutectic composites prepared by arc melting / R. Tu, N. Li, Q. Li [et al.] // J. Eur. Ceram. Soc. ― 2016. ― Vol. 36, № 4. ― P. 959‒966.

32. Tu, R. Preparation of B4C‒ZrB2‒SiC ternary eutectic composites by arc melting and their properties / R. Tu, N. Li, Q. Z. Li [et al.] // Mater. Res. Innov. ― 2015. ― Vol. 19, № sup10. ― P. S10-26-S10-29.

33. Upatov, M. Microstructure and mechanical properties of B4C‒NbB2‒SiC ternary eutectic composites by a crucible-free zone melting method / M. Upatov, J. Vleugels, Y. Koval [et al.] // J. Eur. Ceram. Soc. ― 2021. ― Vol. 41, № 2. ― Р. 1189‒1196.

34. Орданьян, С. С. О закономерностях взаимодействия в системах B4C‒MeIV-VIB2 / С. С. Орданьян // Неорганические материалы. ― 1993. ― № 5. ― С. 15‒17.

35. Орданьян, С. С. Закономерности взаимодействия в системах SiC‒MeIV-VIB2 / С. С. Орданьян // Журнал прикладной химии. ― 1993. ― Т. 66, № 11. ― C. 2439‒2444.

36. Орданьян, С. С. Строение политермического разреза SiC‒W2B5 системы B‒C‒Si‒W / С. С. Орданьян, С. В. Вихман, М. Н. Кузнецов // Огнеупоры и техническая керамика. ― 2004. ― № 12. ― С. 2‒4.

37. Kumazawa, T. Pressureless sintering of boron carbide ceramics / T. Kumazawa, T. Honda, Y. Zhou [et al.] // Journal of the Ceramic Society of Japan. ― 2008. ― Vol. 116, № 1360. ― P. 1319‒1321.

38. Skorokhod, V. V. Processing, microstructure, and mechanical properties of B4C‒TiB2 particulate sintered composites. Part I. Pressureless sintering and microstructure evolution / V. V. Skorokhod // Powder Metallurgy and Metal Ceramics. ― 2000. ― Vol. 39, № 7/8. ― P. 414‒423.

39. Свойства, получение и применение тугоплавких соединений ; под ред. Т. Я. Косолаповой. ― М. : Металлургия, 1986. ― 928 с.

40. Frotscher, M. M2B5 or M2B4? A reinvestigation of the Mo/B and W/B system / M. Frotscher, W. Klein, J. Bauer [et al.] // Zeitschrift für anorganische und allgemeine Chemie. ― 2007. ― Bd 633, № 15. ― S. 2626‒2630.

41. Liang, Y. Thermodynamic identification of tungsten borides / Y. Liang, X. Yuan, W. Zhang // Physical Review B. ― 2011. ― Vol. 83, № 22. ― Article № 220102.

42. Орданьян, С. С. Фазовые равновесия в системе B4C‒W2B5 / С. С. Орданьян, А. А. Болдин, Е. В. Прилуцкий // Журнал прикладной химии. ― 2000. ― Т. 73, № 12. ― С. 2128‒2130.

43. Ordan’yan, S. S. Phase diagram of the W2B5‒ZrB2 system / S. S. Ordan’yan, A. A. Boldin, S. S. Suvorov [et al.] // Inorganic materials. ― 2005. ― Vol. 41, № 3. ― P. 232‒234.

44. Ordan’yan, S. S. The system SiC‒W2B5‒LaB6 / S. S. Ordan’yan, D. D. Nesmelov, S. V. Vikhman // Refract. Ind. Ceram. ― 2009. ― Vol. 50, № 5. ― P. 391‒393. [Орданьян, С. С. Система SiC‒W2B5‒LaB6 / С. С. Орданьян, Д. Д. Несмелов, С. В. Вихман // Огнеупоры и техническая керамика. ― 2009. ― № 10. ― С. 54‒56.]

45. Udalov, Y. The program of calculation of fusibility curves of triple systems DIATRIS 1.2 (Algorithm, interface, and technical application) / Y. Udalov, Y. Morozov // 6th Intern. School-Conf.«Phase diagrams in materials science. ― 2001. ― Р. 58, 59.


Supplementary files

For citation: Nesmelov D.D., Ordan’yan S.S., Udalov Y.P. Structure and mechanical properties of hot- pressed composite ceramics W2B5‒ZrB2‒SiC‒B4C. NOVYE OGNEUPORY (NEW REFRACTORIES). 2021;(4):27-33. https://doi.org/10.17073/1683-4518-2021-4-27-33

Views: 292

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)