Synthesis and research of aluminum oxide additives for refractory composite materials


https://doi.org/10.17073/1683-4518-2021-9-35-40

Full Text:




About the Authors

D. S. Suvorov
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Russian Federation


A. G. Yudin
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Russian Federation


B. B. Khaidarov
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Russian Federation


D. V. Lysov
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Russian Federation


D. V. Kuznetsov
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Russian Federation


References

1. Long, B. Thermodynamic evaluation and properties of refractory materials for steel ladle purging plugs in the system Al2O3‒MgO‒CaO / B. Long, B. Andreas, G. Xu // Ceram. Int. ― 2016. ― Vol. 42. ― P. 11930‒11940. https://doi.org/10.1016/j.ceramint.2016.04.118.

2. Davis, M. Ordered porous materials for emerging applications / M. Davis // Nature. ― 2002. ― Vol. 417, № 6891. ― P. 813‒821. https://doi.org/10.1038/nature00785.

3. Tran, Q. Hydrodeoxygenation of a bio-oil model compound derived from woody biomass using spraypyrolysis-derived spherical γ-Al2O3‒SiO2 catalysts / Q. Tran // J. Ind. Eng. Chem. ― 2020. ― Vol. 92. ― P. 243‒251. https://doi.org/10.1016/j.jiec.2020.09.012.

4. Raimundo, R. Effect of high energy milling on microstructure and mechanical properties of Al2O3‒10 wt. % Co composites consolidated by spark plasma sintering (SPS) / R. Raimundo // Ceram. Int. ― 2021. ― Vol. 47, № 1. ― P. 677‒685. https://doi.org/10.1016/j.ceramint.2020.08.176.

5. Shon, I. Rapid consolidation of nanostructured Mo‒Al2O3 composite from mechanically synthesized powders / I. Shon // Ceram. Int. ― 2018. ― Vol. 44. ― P. 2587‒2592. https://doi.org/10.1016/j.ceramint.2017.10.120.

6. Konopka, K. Microstructure and the fracture toughness of the Al2O3‒Fe composites / K. Konopka, A. Oziȩbło // Mater. Char. ― 2001. ― Vol. 46. ― P. 125‒129. https://doi.org/10.1016/S1044-5803(01)00113-9.

7. Taha, M. Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3‒Ni nanocomposites prepared by mechanical alloying / M. Taha, A. Nassar, M. Zawrah // Ceram. Int. ― 2017. ― Vol. 43. ― P. 3576‒3582. https://doi.org/10.1016/j.ceramint.2016.11.194.

8. Aslibeiki, B. Structural and magnetic properties of Co/Al2O3 cermet synthesized by mechanical ball milling / B. Aslibeiki, P. Kameli // Ceram. Int. ― 2020. https://doi.org/10.1016/j.ceramint.2020.05.086.

9. Zawrah, M. Preparation by mechanical alloying, characterization and sintering of Cu ‒ 20 wt. % Al2O3 nanocomposites / M. Zawrah, H. Zayed, R. Essawy // Mater. Des. ― 2013. ― Vol. 46. ― P. 485‒490. https://doi.org/10.1016/j.msea.2007.08.059.

10. Karimzadeh, F. Synthesis and characterization of Zn/Al2O3 nanocomposite by mechanical alloying / F. Karimzadeh, M. Enayati, M. Tavoosi // Mater. Sci. Eng. ― 2008. ― Vol. 486. ― P. 45‒48. https://doi.org/10.1016/j.msea.2007.08.059.

11. Goudarzi, M. Using pomegranate peel powders as a new capping agent for synthesis of CuO/ZnO/Al2O3 nanostructures; enhancement of visible light photocatalytic activity / M. Goudarzi, M. SalavatiNiasari // Int. J. Hydrogen Energy. ― 2018. ― Vol. 43, № 31. ― P. 14406‒14416. https://doi.org/10.1016/j.ijhydene.2018.06.034.

12. Shon, I. Mechanochemical synthesis and consolidation of a nanostructured B‒Al2O3 hard composite by high-frequency induction-heated sintering / I. Shon // Ceram. Int. ― 2017. ― Vol. 43, № 1. ― P. 1612‒1616. https://doi.org/10.1016/j.ceramint.2016.10.089.

13. Shon, I. Mechanical synthesis and rapid consolidation of nanostructured FeAl‒Al2O3 composites by highfrequency induction heated sintering / I. Shon // Ceram. Int. ― 2012. ― Vol. 38, № 7. ― P. 6035‒6039. https://doi.org/10.1016/j.ceramint.2012.03.073.

14. Samotaev, N. Al2O3 nanostructured gas sensitive material for silicon based low power thermocatalytic sensor / N. Samotaev // Materials Today : Proceedings. ― 2020. https://doi.org/10.1016/j.matpr.2019.12.393.

15. Zhang, J. Microstructure and properties of Al2O3‒13 % TiO2 coatings sprayed using nanostructured powders / J. Zhang // Rare Metals. ― 2007. ― Vol. 26, № 4. ― P. 391‒397. https://doi.org/10.1016/S1001-0521(07)60234-4.

16. Romcevic, N. Structural and optical properties of ZnO‒Al2O3 nanopowders prepared by chemical methods / N. Romcevic // Journal of Luminescence. ― 2020. ― P. 117‒273. https://doi.org/10.1016/j.jlumin.2020.117273.

17. Kostyukov, A. Photoluminescence of oxygen vacancies in nanostructured Al2O3 / A. Kostyukov // Optical Materials. ― 2018. ― Vol. 75. ― P. 757‒763. https://doi.org/10.1016/j.optmat.2017.11.040.

18. Suvorov, D. Nanomodification of refractories with finely-dispersed additives with the use of a vortex electromagnetic homogenizer / D. Suvorov, B. Khaydarov, D. Lysov // IOP Conference Series: Mater. Sci. Eng. ― 2020. ― Vol. 718. https://doi:10.1088/1757-899X/718/1/012018.


Supplementary files

For citation: Suvorov D.S., Yudin A.G., Khaidarov B.B., Lysov D.V., Kuznetsov D.V. Synthesis and research of aluminum oxide additives for refractory composite materials. NOVYE OGNEUPORY (NEW REFRACTORIES). 2021;(9):35-40. https://doi.org/10.17073/1683-4518-2021-9-35-40

Views: 379

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)