Using the acoustic method for measuring the sound absorption coefficient to predict the durability (heat resistance) of heat-resistant concretes


https://doi.org/10.17073/1683-4518-2020-12-43-48

Full Text:




About the Authors

R. Stonys
Институт строительных материалов, Вильнюсский технический университет им. Гедиминаса
Lithuania


A. Jagniatinskis
Институт строительных материалов, Вильнюсский технический университет им. Гедиминаса
Lithuania


J. Malaiškienė
Институт строительных материалов, Вильнюсский технический университет им. Гедиминаса
Lithuania


J. Škamat
Институт строительных материалов, Вильнюсский технический университет им. Гедиминаса
Lithuania


V. Antonovič
Институт строительных материалов, Вильнюсский технический университет им. Гедиминаса
Lithuania


A. Koryakins
Институт материалов и конструкций, Рижский технический университет
Latvia


A. Kudžma
Институт строительных материалов, Вильнюсский технический университет им. Гедиминаса
Lithuania


References

1. Damhof, F. Experimental analysis of the evolution of thermal shock damage using transit time measurement of ultrasonic waves / F. Damhof, W. A. M. Brekelmans, M. G. D. Geers // J. Eur. Ceram. Soc. ― 2009. ― Vol. 29. ― P. 1309‒1322.

2. Soboyejo, W. O. Investigation of thermal shock in a hightemperature refractory ceramic: a fracture mechanics approach / W. O. Soboyejo, C. Mercer // J. Am. Ceram. Soc. ― 2001. ― Vol. 84, № 6. ― P. 1309‒1314.

3. Geck, H. G. Kammerofen zur betriebsnahen Prüfung der Temperaturwechselbeständigkeit feuerfester Steine / H. G. Geck, H. J. Langhammer, A. Chakraborty // Stahl und Eisen. ― 1973. ― Vol. 93, № 21. ― P. 967‒976.

4. Aggelis, D. G. Acoustic emission for fatigue damage characterization in metal plates / D. G. Aggelis, E. Z. Kordatos, T. E. Matikas // Mech. Res. Commun. ― 2011. ― Vol. 38. ― P. 106‒110.

5. Ohtsu, M. Quantitative AE techniques standardized for concrete structures / M. Ohtsu // Adv. Mater. Res. ― 2006. ― Vol. 13/14. ― P. 183‒192.

6. Zhang, Z. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete / Z. Zhang, J. L. Provis, A. Reid, H. Wang // Cem. Concr. Compos. ― 2015. ― Vol. 62. ― P. 97‒105.

7. Verstrynge, E. Monitoring of crack growth in masonry with acoustic emission and fibre optic sensors / E. Verstrynge, M. Wevers // Proceedings of IIIAE, Kyoto, Japan. ― 2016. ― P. 129‒134.

8. Briche, G. Investigation of the damage behaviour of refractory model materials at high temperature by combined pulse echography and acoustic emission techniques / G. Briche, N. Tessier-Doyen, M. Huger, T. Chotard // J. Eur. Cerm. Soc. ― 2008. ― Vol. 28. ― P. 2835‒2843.

9. Andreev, K. Acoustic emission based damage limits and their correlation with fatigue resistance of refractory masonry / K. Andreev, N. Shetty, E. Verstrynge // Constr. Build. Mater. ― 2018. ― Vol. 165. ― P. 639‒646.

10. Briche, G. Investigation of the damage behaviour of refractory model materials at high temperature by combined pulse echography and acoustic emission techniques / G. Briche, N. Tessier-Doyen, M. Huger, T. Chotard // J. Eur. Ceram. Soc. ― 2008. ― Vol. 28. ― P. 2835‒2843.

11. Antonovič, V. Procedural elements in estimation of the thermal shock resistance of different types of refractory concrete based on chamotte filler / V. Antonovič, M. Šukšta, I. Pundienė, R. Stonys // Refract. Ind. Ceram. ― 2011. ― Vol. 52. ― P. 70‒74.


Supplementary files

For citation: Stonys R., Jagniatinskis A., Malaiškienė J., Škamat J., Antonovič V., Koryakins A., Kudžma A. Using the acoustic method for measuring the sound absorption coefficient to predict the durability (heat resistance) of heat-resistant concretes. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(12):43-48. https://doi.org/10.17073/1683-4518-2020-12-43-48

Views: 207

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)