Influence of nanosized titanium carbide on the synthesis, structure and properties of a composite material based on titanium carbosilicide


https://doi.org/10.17073/1683-4518-2020-10-46-51

Full Text:




About the Authors

M. N. Kachenyuk
ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет»
Russian Federation


V. B. Kulmetyeva
ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет»
Russian Federation


A. A. Smetkin
ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет»
Russian Federation


References

1. Barsoum, M. W. The M(n+1)AX(n) phases: a new class of solids: thermodynamically stable nanolaminates / M. W. Barsoum // Prog. Solid State Chem. ― 2000. ― Vol. 28. ― P. 201–281. https://doi.org/10.1016/S0079-6786(00)00006-6.

2. Sun, Z. M. Progress in research and development on MAX phases: a family of layered ternary compounds / Z. M. Sun // International Materials Reviews. ― 2011. ― Vol. 56, № 3. ― Р. 143. DOI: 10.1179/1743280410Y.0000000001.

3. Ji, X. Synthesis, characterization and tribological properties of High purity Ti3SiC2 nanolamellas / Z. Yi, D. Zhang, K. Wu, F. Chang, C. Li, H. Tang, H. Song // Ceram. Int. ― 2014. ― Vol. 40. ― P. 6219‒6224. https://doi.org/10.1016/j.ceramint.2013.11.077.

4. Shi, X. Influence of Ti3SiC2 content on tribological properties of NiAl matrix self-lubricating composites / X. Shi, M. Wang, W. Zhai, Z. Xu, Q. Zhang, Y. Chen // Materials and Design. ― 2014. ― Vol. 55. ― P. 93‒103. https://doi.org/10.1016/j.matdes.2012.08.060.

5. Zhang, J. Study of the interfacial reaction between Ti3SiC2 particles and Al matrix / J. Zhang, W. Liu, Y. Jin, S. Wu, T. Hu, Y. Li, X. Xiao // J. Alloys Compd. ― 2018. ― Vol. 738. ― P. 1‒9. https://doi.org/10.1016/j.jallcom.2017.12.123.

6. Al Anazi, F. Synthesis and tribological behavior of novel Ag- and Bi-based composites reinforced with Ti3SiC2 / F. Al Anazi, S. Ghosh, R. Dunnigan, S. Gupta // Wear. ― 2017. ― Vol. 376/377. ― P. 1074‒1083. https://doi.org/10.1016/j.wear.2017.01.107.

7. Jiang, X. Microstructures and mechanical properties of Cu/Ti3SiC2/C/graphene nanocomposites prepared by vacuum hot-pressing sintering and hot isostatic pressing / X. Jiang, W. Liu, Y. Li [et al.] // Composites Part B. ― 2018. ― Vol. 141. ― P. 203‒213. https://doi.org/10.1016/j.compositesb.2017.12.050.

8. Gupta, S. On the tribology of the MAX phases and their composites during dry sliding: A review / S. Gupta, M. W. Barsoum // Wear. ― 2011. ― Vol. 271. ― P. 1878‒1894. https://doi.org/10.1016/j.wear.2011.01.043.

9. Wei, G. C. Improvement in mechanical properties in SiC by the addition of TiC particles / G. C. Wei, P. F. Becher // J. Am. Ceram. Soc. ― 1984. ― Vol. 67. ― P. 571‒574.

10. Wang, L. J. Rapid reactive synthesis and sintering of submicron TiC/SiC composites through spark plasma sintering / L. J. Wang, W. Jiang, L. D. Chen, S. Q. Bai // J. Am. Ceram. Soc. ― 2004. ― Vol. 87. ― P. 1157‒1160. https://doi.org/10.1111/j.1551-2916.2004.01157.x.

11. Wakelkamp, W. J. J. Phase relations in the Ti‒Si‒C system / W. J. J. Wakelkamp, F. J. van Loo, R. Metselaar // J. Eur. Ceram. Soc. ― 1991. ― Vol. 8. ― P. 135. https://doi.org/10.1016/0955-2219(91)90067-A.

12. Pierson, H. O. Handbook of refractory carbides and nitrides: properties, characteristics processing and applications / H. O. Pierson. ― Noyes Publications, Westwood, NJ, USA,1996.

13. Zhou, Y. C. Microstructure of Ti3SiC2 prepared by the in-situ hot pressing/solid–liquid reaction process / Y. C. Zhou, Z. M. Sun, B. H. Yu // Z. Metallkd. ― 2000. ― Vol. 91. ― P. 937‒941.

14. Tian, W. Synthesis, microstructure and mechanical properties of Ti3SiC2‒TiC composites pulse discharge sintered from Ti/Si/TiC powder mixture / W. Tian, Z. Sun, H. Hashimoto, Y. Du // Materials Science and Engineering A. ― 2009. ― Vol. 526. ― P. 16‒21. http://dx.doi.org/10.1016/j.msea.2009.08.029.

15. Ghosh, N. C. Microstructure and wear behavior of spark plasma sintered Ti3SiC2 and Ti3SiC2‒TiC composites / N. C. Ghosh, S. P. Harimkar // Ceram. Int. ― 2013. ― Vol. 39. ― P. 4597‒4607. https://doi.org/10.1016/j.ceramint.2012.11.058.

16. Kul'met'eva, V. B. Production of powder of titanium carbide / V. B. Kul'met'eva // Ogneupory i Tekhnicheskaya Keramika. ― 2004. ― № 7. ― P. 23‒26.

17. Kachenyuk, M. N. Effect of mechanical activation on a mixture for synthesizing titanium silicon carbide / M. N. Kachenyuk, V. G. Gilev, A. A. Smetkin // Refract. Ind. Ceram. ― 2018. ― Vol. 59. ― P. 257. https://doi.org/10.1007/s11148-018-0218-0.

18. Antsiferov, V. N. Features of compaction and phase formation in the Ti‒Si‒C system during plasmaarc sintering / V. N. Antsiferov, M. N. Kachenyuk, A. A. Smetkin // Refractories and Industrial Ceramics. ― 2015. ― Vol. 56, № 2. ― Р. 168‒171. DOI:10.1007/s11148-015-9806-4 http://link.springer.com/article/10.1007/s11148-015-9806-4.

19. Anstis, G. R. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements / G. R. Anstis, P. Chantikul, B. R. Lawn [et al.] // J. Am. Ceram. Soc. ― 1981. ― Vol. 64, № 9. ― Р. 533‒538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.

20. Hashimoto, Н. Morphological evolution during reaction sintering of Ti, SiC and C powder blend / H. Hashimoto, Z. M. Sun, S. Tada // J. Alloys Compd. ― 2007. ― Vol. 441, № 1/2. ― Р. 174‒180. DOI: 10.1016/j. jallcom.2006.08.339.


Supplementary files

For citation: Kachenyuk M.N., Kulmetyeva V.B., Smetkin A.A. Influence of nanosized titanium carbide on the synthesis, structure and properties of a composite material based on titanium carbosilicide. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(10):46-51. https://doi.org/10.17073/1683-4518-2020-10-46-51

Views: 201

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)