Influence of hardening additives on the characteristics of TiC‒Al2O3 ceramic composite tribological applications, obtained by SHS
https://doi.org/10.17073/1683-4518-2020-9-47-55
Abstract
In attempts to attain a SHS synthesized TiC‒Al2O3 composite with high density, homogenous microstructure and extra mechanical properties for using in aggressive media, addition of different reinforcements have to be studied and inspected. In this work, ductile nickel metal powder with different content (5‒20 wt. %) and 1 mole fraction dilution of alumina and zirconia with and without Ni addition are introduced to TiC‒Al2O3 ceramic and synthesized by combined self-propagating high temperature synthesis (SHS) and direct consolidation (DC) technique. The influence of nickel wt. % and dilution with zirconia and alumina on the phase composition, densification behavior, microstructure and mechanical properties of SHS synthesized TiC‒Al2O3 composite has been investigated and analyzed. Results revealed that, addition of 5 wt. % Ni gave the best densification behavior, microstructure and mechanical properties with exact formation of the target composite of TiC‒Al2O3. However, increasing Ni content higher than 5 wt % and dilution with zirconia and alumina led to disturbing the chemical reactions between the starting precursors, drooping and deterioration in density, microstructure and mechanical properties. Accordingly, this study suggests the addition of 5 wt. % Ni for a highly dense TiC‒Al2O3 composite with homogenized morphology and unparalleled mechanical properties. Moreover, the different investigated characteristics of the produced composites nominate it strongly to be used successfully in aggressive and tribological applications.
About the Authors
D. H. A. BesisaEgypt
Z. I. Zaki
Egypt
A. M. M. Amin
Egypt
Y. M. Z. Ahmed
Egypt
E. M. M. Ewais
Egypt
References
1. Kecskes, L. J. Dynamic consolidation of combustionsynthesized alumina‒titanium diboride composite ceramics / L. J. Kecskes, A. Niller, T. Kottke, K. V. Logan, G. R. Villalobos // J. Am. Ceram. Soc. ― 1996. ― Vol. 79. ― P. 2687‒2695.
2. Elazar, Y. G. Dense high-temperature ceramics by thermal explosion under pressure / Y. G. Elazar, I. Gotman // J. Eur. Ceram. Soc. ― 1999. ― Vol. 19. ― P. 2381‒2393.
3. Mao, D. S. Mechanical properties and fracture behaviour of Al2O3‒TiC‒Co advanced ceramics / D. S. Mao, J. Li // J. Mater. Sci. Lett. ― 1997. ― Vol. 16. ― P. 537‒540.
4. Wahi, R. P. Fracture behaviour of composites based on Al2O3‒TiC / R. P. Wahi, B. Ilschner // J. Mater. Sci. ― 1980. ― Vol. 15. ― P. 875‒885.
5. Goldstein, A. Al2O3/TiC based metal cutting tools by microwave sintering followed by hot isostatic pressing / A. Goldstein, A. Singurindi // J. Am. Ceram. Soc. ― 2004. ― Vol. 83. ― P. 1530‒1532.
6. J. T. Horng, N. M. Liu, K. T. Chiang // J. Mate. Process. Technol. ― 2008. ― P. 532‒541.
7. A. S. Kumar, A. R. Durai, T. Sornakumar // J. Refract. Met. Hard Mater. ― 2003. ― Vol. 21. ― P. 109‒117.
8. Grigoryev, M. V. Microstructure, mechanical properties and machining performance of hot-pressed Al2O3‒ZrO2‒TiC composites / M. V. Grigoryev [et al.] // IOP Conf. Ser. : Mater. Sci. Eng. ― 2013. ― Vol. 116. ― 012002.
9. Lee, M. Rapid rate sintering of Al sub 2 O sub 3-TiC composites for cutting-tool applications / M. Lee, M. P. Borom // Adv. Ceram. Mater. ― 1988. ― Vol. 3. ― P. 38‒44.
10. Wahi, R. P. Fracture behaviour of composites based on Al2O3‒TiC / R. P. Wahi, B. Ilschner // J. Mater. Sci. ― 1980. ― Vol. 15. ― P. 875‒885.
11. Nagano, T. Deformation of alumina/titanium carbide composite at elevated temperatures / T. Nagano, H. Kato, F. Wakai // J. Am. Ceram. Soc. ― 1991. ― Vol. 74, № 9. ― Р. 2258‒2262.
12. Gedevanishvili, S. V. Field-assisted combustion synthesis of MoSi2‒SiC composites / S. V. Gedevanishvili, Z. A. Munir // Scr. Met. Mater. ― 1994. ― Vol. 31. ― P. 741‒743.
13. Xue, H. Extending the compositional limit of combustion-synthesized B4C‒TiB2 composites by field activation / H. Xue, Z. A. Munir // Metall. Mater. Trans. B. ― 1966. ― Vol. 27. ― P. 475‒480.
14. Yi, H. C. Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials / H. C. Yi, J. J. Moore // J. Mater. Sci. ― 1990. ― Vol. 25. ― P. 1159‒1168.
15. Gedevanishvili, S. Field-activated combustion synthesis in the Nb‒Si system / S. Gedevanishvili, Z. A. Munir // Mater. Sci. Eng. A. ― 1996. ― Vol. 211. ― P. 1‒9.
16. Hoke, D. A. Combustion synthesis/dynamic densification of a TiB2‒SiC composite / D. A. Hoke, D. K. Kim, J. C. Lasalvia, M. A. Meyers // J. Am. Ceram. Soc. ― 1996. ― Vol. 79. ― P. 177‒182.
17. Ahmed, Y. M. Z. Simultaneous synthesis and sintering of TiC/Al2O3 composite via self propagating synthesis with direct consolidation technique / Y. M. Z. Ahmed, Z. I. Zaki, R. K. Bordia, D. H. A. Besisa, A. M. M. Amin // Ceram. Inter. ― 2016. ― Vol. 42, № 15. ― P. 16589‒16597.
18. Wang, L. Structural and mechanical properties of TiB2 and TiC prepared by self-propagating hightemperature synthesis/dynamic compaction / L. Wang, M. R. Wixom, L. T. Thopson // J. Mater. Sci. ― 1994. ― Vol. 29. ― P. 534‒543.
19. Feng, H. J. Combustion synthesis of ceramic-metal composites materials: the TiC‒Al2O3‒Al system / H. J. Feng, J. J. Moore, D. G. Wirth // Metall. Trans. A. ― 1992. ― Vol. 23A. ― P. 2373‒2379.
20. Chakraborty, A. Effect of MoSi2 and Nb reinforcements on mechanical properties of Al2O3 matrix composites / A. Chakraborty, S. V. Kamat, R. Mitra, K. K. Ray // J. Mater. Sci. ― 2000. ― Vol. 35. ― P. 3827‒3835.
21. Fahrenholtz, W. G. Al2O3‒Ni composites with high strength and fracture toughness / W. G. Fahrenholtz, D. T. Ellerby, R. E. Loehman // J. Am. Ceram. Soc. ― 2000. ― Vol. 83. ― P. 1279‒1280.
22. Flinn, B. D. Toughening in composites of Al2O3 reinforced with Al / B. D. Flinn, M. Rühle, A. G. Evans // Acta Metall. ― 1989. ― Vol. 37. ― P. 3001‒3006.
23. Kasuriya, S. The effect of MgO‒Y2O3 on Al2O3‒TiC composites / S. Kasuriya, D. Atong // Mater. Sci. Forum. ― 2007. ― Vol. 534‒536. ― P. 605‒608.
24. Kumar, R. Mechanical and tribological properties of Al2O3--TiC composite fabricated by spark plasma sintering process with metallic (Ni, Nb) binders / R. Kumar, A. K. Chaubey, T. Maity, K. G. Prashanth // Metals. ― 2018. ― Vol. 8, № 50. ― P. 1‒12.
25. Ahmed, Y. M. Z. Effect of zirconia and iron on the mechanical properties of Al2O3/TiC composites processed using combined self-propagating synthesis and direct consolidation technique / Y. M. Z. Ahmed, Z. I. Zakia, D. H. A. Besisa, A. M. M. Amin, R. K. Bordia // Mater. Sci. & Eng. A. ― 2017. ― Vol. 696. ― P. 182‒189.
26. Otani, K. Development of ultraheavy gauge (210 mm thick) 800 N/mm2 tensile strenght plate steel for racks of jack-up rigs / K. Otani, K. Hattori, H. Muraoka, H. Kawazoe, S. Tsuruta // Nippon Steel Tech. Rep. ― 1993. ― Vol. 58. ― P. 292.
27. Matsushita, J. Preparation and mechanical properties of TiB2 composites containing Ni and C / J. Matsushita, H. Nagashima, H. Saito // J. Ceram. Soc. Jpn. ― 1991. ― Vol. 99. ― P. 78.
28. Zhang, G. J. Effects of Ni addition on mechanical properties of TiB2/SiC composites prepared by reactive hot pressing (RHP) / G. J. Zhang, Z. Z. Jin, X. M. Yue // J. Mater. Sci. ― 1997. ― Vol. 32. ― P. 2093‒2097.
29. Choi, Y. Effect of precursors on the combustion synthesis of TiC‒Al2O3 composite / Y. Choi, S. Rhee // J. Mater. Res. ― 1994. ― Vol. 9, № 7. ― P. 1761‒1766.
30. Fukuhara, M. Physical properties and cutting performance of silicon nitride ceramic / M. Fukuhara, K. Fukazawa, A. Fukawa // Wear. ― 1985. ― Vol. 102. ― P. 195‒210.
31. Jerebtsov, D. A. Phase diagram of the system: Al2O3‒ZrO2 / D. A. Jerebtsov, G. G. Mikhailov, S. V. Sverdina // Ceram. Int. ― 2000. ― Vol. 26. ― P. 821‒823.
32. Liu, G. One-step preparation of dense TiC1−xNx–Ni3Ti cermet by combustion synthesis / G. Liu, J. Li, K. Chen // Mater. Des. ― 2015. ― Vol. 87. ― P. 6‒9.
33. Qiu, F. Effect of Al addition on the microstructures and compression properties of (TiCxNy‒TiB2)/Ni composites fabricated by combustion synthesis and hot press / F. Qiu, R. Zuo, S.-L. Shu, Y.-W. Wang, Q.-C. Jiang // Powder Technol. ― 2015. ― Vol. 286. ― P. 716‒721.
34. Mc Cauley, J. W. Simultaneous preparation and selfsintering of materials in the system Ti‒B‒C / J. W. Mc Cauley, N. D. Corbin, T. Resetar, P. Wong // Ceram. Eng. Sci. Proc. ― 1982. ― Vol. 3. ― P. 538‒554.
35. Cutter, R. A. Pressureless-sintered Al2O3‒TiC composites / R. A. Cutter, A. C. Hurford, A. V. Virkear // Mater. Sci. Eng. A. ― 1988. ― Vol. 105/A106. ― P. 183‒192.
36. Sun, X. Optimization of a ductile-particle-toughened ceramic / X. Sun, J. Yeomans // J. Am. Ceram. Soc. ― 1996. ― Vol. 79. ― P. 2705‒2717.
Supplementary files
For citation: Besisa D., Zaki Z.I., Amin A., Ahmed Y., Ewais E. Influence of hardening additives on the characteristics of TiC‒Al2O3 ceramic composite tribological applications, obtained by SHS. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(9):47-55. https://doi.org/10.17073/1683-4518-2020-9-47-55
Refbacks
- There are currently no refbacks.