Extraction of compact ceramic electrode materials based on the Ti‒B‒Fe system modified by nanosized AlN particles by SHS extrusion


https://doi.org/10.17073/1683-4518-2020-6-51-55

Full Text:




Abstract

Compact ceramic electrode materials based on the Ti‒B‒Fe system modified with nanosized particles of aluminum nitride (up to 15 wt. %) were obtained by SHS extrusion. The effect of additives on the combustion characteristics of the studied system, as well as on the structure and phase composition of the obtained materials, is studied. The addition of aluminum nitride increases the content of boride and nitride phases in the final product. It was found that the introduction of modifying nanosized particles of aluminum nitride into the initial charge leads to the grinding of grains of boride and nitride phases, which together increases the microhardness by 10 %, in comparison with unmodified samples.

About the Authors

A. V. Bolotskaya
ФГБУН «Институт структурной макрокинетики и проблем материаловедения им. академика А. Г. Мержанова РАН»
Russian Federation


M. V. Mikheev
ФГБУН «Институт структурной макрокинетики и проблем материаловедения им. академика А. Г. Мержанова РАН»
Russian Federation


References

1. Namini, A. S. Microstructure-mechanical properties correlation in spark plasma sintered Ti‒4,8 wt. % TiB2 composites / A. S. Namini, A. Motallebzadeh, B. Nayebi [et al.] // Mater. Chem. Phys. ― 2019. ― Vol. 223. ― P. 789‒796.

2. Нагибин, Г. Е. Разработка и промышленные испытания композиционного материала на основе TiB2 для ремонта локальных разрушений подовых блоков электролизера / Г. Е. Нагибин, А. В. Завадяк, И. И. Пузанов [и др.] // Известия вузов. Цветная металлургия. ― 2019. ― № 3. ― С. 12‒19.

3. Liu, Y. The influence of TiB2 content on high temperature flexural strength and reliability of the developed titanium carbonitride based ceramic tool material / Y. Liu, C. Huang, B. Zou [et al.] // Ceram. Int. ― 2020. ― Vol. 46, № 9. ― P. 10356‒10361.

4. Насакина, Е. О. Исследование формирования защитного титанового поверхностного слоя при магнетронном распылении в зависимости от геометрии потока / Е. О. Насакина, М. А. Сударчикова, Г. С. Спрыгин [и др.] // Актуальные вопросы машиноведения. ― 2018. ― № 7. ― С. 294‒296.

5. Коломейченко, А. В. Повышение износостойкости металлокерамических покрытий, нанесенных методом карбовибродугового упрочнения / А. В. Коломейченко, И. Н. Кравченко, М. Н. Ерофеев [и др.] // Проблемы машиностроения и автоматизации. ― 2019. ― № 4. ― С. 69‒74.

6. Agzamov, R. D. Influence of ion nitriding regimes on diffusion processes in titanium alloy Ti‒6Al‒4V / R. D. Agzamov, A. F. Tagirov, K. N. Ramazanov // Defect and Diffusion Forum. ― Trans. Tech. Publications. ― 2018. ― Vol. 383. ― P. 161‒166.

7. Хорьякова, Н. М. Перспективы технологии электроискрового легирования деталей автомобилей электроэрозионным медным электродом / Н. М. Хорьякова, Е. В. Агеева, К. В. Садова // Современные автомобильные материалы и технологии (САМИТ-2019). ― 2019. ― С. 370‒374.

8. Иванов, В. И. Использование современных ресурсосберегающих методов при изготовлении и ремонте деталей на примере электроискрового легирования (ЭИЛ) / В. И. Иванов, В. А. Денисов, Д. А. Игнатьков // Известия Юго-Западного государственного университета. ― 2020. ― Т. 23, № 6. ― С. 8‒20.

9. Кудряшов, А. Е. Перспективы применения технологии электроискрового легирования и СВСэлектродных материалов для повышения стойкости прокатных валков / А. Е. Кудряшов, Е. А. Левашов, Е. А. Репников [и др.] // Нанотехнологии: наука и производство. ― 2018. ― № 2. ― С. 63‒66.

10. Abbas, S. Z. Fe‒TiB2 composites produced through casting technique / S. Z. Abbas // Mater. Sci. Technol. ― 2020. ― Vol. 36, № 3. ― P. 299‒306.

11. Колесникова, К. А. Композиционные износостойкие покрытия системы Ti‒B‒Fe, полученные методом электронно-лучевой наплавки в вакууме : автореф. … дис. канд. наук. ― Томск : 2008. ― 18 с.

12. Бажин, П. М. Электроискровые покрытия, полученные керамическими СВС-электродными материалами с наноразмерной структурой / П. М. Бажин, А. М. Столин, Н. Г. Зарипов [и др.] // Электронная обработка материалов. ― 2016. ― Т. 52, № 3. ― С. 1‒8.

13. Бажин, П. М. Самораспространяющийся высокотемпературный синтез в условиях совместного действия давления со сдвигом / П. М. Бажин, А. М. Столин, М. В. Михеев [и др.] // ДАН. ― 2017. ― Т. 473, № 5. ― С. 568‒571.

14. Bolotskaia, A. V. The effect of aluminum nitride nanoparticles on the structure, phase composition and properties of materials of the Ti‒B‒Fe system obtained by SHS-extrusion / A. V. Bolotskaia, M. V. Mikheev, P. M. Bazhin [et al.] // Lett. Mater. ― 2020. ― Vol. 10, № 1. ― P. 43‒47.

15. Bolotskaia, A. V. The influence of aluminum nitride nanoparticles on the structure, phase composition, and properties of TiB/Ti-based materials obtained by SHS extrusion / A. V. Bolotskaia, M. V. Mikheev, P. M. Bazhin [et al.] // Inorg. Mater. Appl. Res. ― 2019. ― Vol. 10, № 5. ― P. 1191‒1195.

16. Shiganova, L. A. The self-propagating hightemperature synthesis of a nanostructured titanium nitride powder with the use of sodium azide and haloid titanium-containing salt / L. A. Shiganova, G. V. Bichurov, A. P. Amosov [et al.] // Russ. J. Non-Ferr. Met. ― 2011. ― Vol. 52, № 1. ― P. 91‒95.

17. Amosov, A. P. Self-propagating high-temperature synthesis of an aluminum nitride nanopowder from a Na3AlF6 + 3NaN3 + nAl powder mixture / A. P. Amosov, Yu. V. Titova, D. A. Maidan [et al.] // Russ. J. Inorg. Chem. ― 2016. ― Vol. 61, № 10. ― P. 1225‒1234.

18. Amosov, A. P. Azide-based technologies / A. P. Amosov, G. V. Bichurov // Concise Encyclopedia of SHS. ― Elsevier. ― 2017. ― P. 24‒26.


Supplementary files

For citation: Bolotskaya A.V., Mikheev M.V. Extraction of compact ceramic electrode materials based on the Ti‒B‒Fe system modified by nanosized AlN particles by SHS extrusion. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(6):51-55. https://doi.org/10.17073/1683-4518-2020-6-51-55

Views: 271

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)