Development of dense materials by plasmaspark sintering of oxide‒oxide-free components with different mixtures of metal powders


https://doi.org/10.17073/1683-4518-2020-6-27-36

Full Text:




Abstract

The effect of powders mixtures of Zr and Mo, Zr and Ta during spark plasma sintering of compositions at pressing loading of 60 MPa in the range 1200‒1600 °С on the phase composi-tion, microstructure, grain sizes of crystalline phases, relative density, linear shrinkage, physicalmechanical properties and linear correlation of modulus of elasticity and fracture toughness of mullite‒β-SiAlON‒cBN samples were shown in this work. Synthesised powders of β-SiAlON and c-BN are characterisized by intensive crystalliza-tion of β-SiAlON and c-BN, respectively. Sintered samples with mixtures of Zr and Mo, Zr and Ta show intensive mullitization, active growing of β-SiAlON and less intensive growing of c-BN in the range 1200‒1600 °C. Active growing of crystalline β-Mo,Zr, Mo and Mo2Zr phases are noticeable in the sample with mixtures of Zr and Mo, but intensive growing of crystalline β-Ta,Zr, α-Zr,Ta, α-Ta, Ta3Zr and Ta3Zr2 phases are observed in the sample with mixtures of Zr and Ta with increase of temperature. Mixture of Zr and Mo favour the formation of more uniformly and densely sintered microstructure of ceramic phase, round shape of metallic Mo, β-Mo,Zr particles, more reinforced boundaries areas of ceramic‒metallic, metallic phases and facilitate the reduction grains sizes of crystalline phases in the range 1400‒1600 °С. As a result, composition with mixture of Zr and Mo sinters more uniformly and gradually, corresponding sample shows larger values of physicalmechanical properties, higher resistance to the cracking with insignificant quantity of microcracks as well as larger linear correlation of modulus of elasticity and fracture toughness in the range 1200‒1600 °С.

About the Author

A. V. Hmelov
Рижский технический университет, Институт силикатных материалов
Latvia


References

1. Hotta, M. Densification and microstructure of Al2O3 ‒cBN composites prepared spark-plasma sintering / M. Hotta, T. Goto // J. Ceram. Soc. Jap. ― 2008. ― Vol. 116, № 6. ― P. 744‒748.

2. Hotta, M. Densification, phase transformation and hardness of mullite‒cubic BN composites prepared by spark plasma sintering / M. Hotta, T. Goto // J. Ceram. Soc. Jap. ― 2010. ― Vol. 118, № 2. ― P. 157‒160.

3. Chakravarty, D. Microstructure, mechanical properties and machining performance of spark plasma sintered Al2O3‒ZrO2‒TiCN nanocomposites / D. Chakravarty, G. Sundararajan // J. Eur. Ceram. Soc. ― 2013. ― Vol. 33, № 13/14. ― P. 2597‒2607.

4. Hmelov, A. V. Preparation of mullite‒TiC‒TiN materials by a plasma spark method and their properties / A. V. Hmelov // Refrac. Ind. Ceram. ― 2017. ― Vol. 58, № 4. ― P. 418‒425.

5. Хмелёв, А. В. Получение муллит‒TiC‒TiN материалов плазменно-искровым способом и их свойства / А. В. Хмелёв // Новые огнеупоры. ― 2017. ― № 8. ― С. 22‒30.

6. Hmelov, A. V. Producing and properties of mullitesialon‒ZrB2 materials obtained using a spark-plasma technique / A. V. Hmelov // Refrac. Indust. Ceram. ― 2019. ― Vol. 59, № 6. ― P. 633‒641.

7. Хмелёв, А. В. Получение муллит‒сиалон‒ZrB2 материалов плазменно-искровым способом и их свойства / А. В. Хмелёв // Новые огнеупоры. ― 2018. ― № 12. ― С. 22‒30.

8. Guo, S. High-strength zirconium diboride-based ceramic composites consolidated by low temperature hot pressing / S. Guo, Y. Kagawa // Sci. Techn. Adv. Mat. ― 2012. ― Vol. 13, № 4. ― P. 1‒6.

9. Hmelov, A. V. Sintering a mixture of powders in the Al2O3‒SiO2‒β-SiAlON‒TiC‒Dy2O3 system by the sparkplasma method with high compaction loading / A. V. Hmelov // Refrac. Ind. Ceram. ― 2019. ― Vol. 60, № 3. ― P. 284‒290.

10. Хмелёв, А. В. Спекание смеси порошков в системе Al2O3‒SiO2‒β-SiAlON‒TiC‒Dy2O3 плазменно-искровым методом при высокой нагрузке прессования / А. В. Хмелёв // Новые огнеупоры. ― 2019. ― № 6. ― С. 28‒34.

11. Hmelov, A. V. Mullite‒TiC‒c-BN‒c-ZrO2 materials produced by spark-plasma sintering and their properties / A. V. Hmelov // Refrac. Ind. Ceram. ― 2019. ― Vol. 60, № 1. ― P. 86‒91.

12. Хмелёв, А. В. Плазменно-искровое спекание смесей оксидного и безоксидного порошков с получением и изучением свойств муллит‒TiC‒c-BN‒c-ZrO2 материалов / А. В. Хмелёв // Новые огнеупоры. ― 2019. ― № 2. ― С. 23‒29.

13. Hmelov, A. V. Strengthening oxide‒oxide-free materials by incorporation of TiC‒ZrC solid solutions into their structure during spark plasma sintering of initial powder mixtures under high compression load / A. V. Hmelov // Refrac. Ind. Ceram. ― 2020. ― Vol. 60, № 5. ― P. 486‒494.

14. Хмелёв, А. В. Укрепление оксидно-безоксидных материалов внедрением в их структуру твердых растворов TiC‒ZrC в ходе плазменно-искрового спекания исходных смесей порошков при высокой нагрузке прессования / А. В. Хмелёв // Новые огнеупоры. ― 2019. ― № 10. ― С. 18‒26.

15. Ren, X. Spark plasma sintered WC‒Ni carbides with various contents of ZrC nanopowder / X. Ren, Z. Peng, Y. Peng, C. Wang // Key Eng. Mat. ― 2014. ― Vol. 591, № 1. ― P. 75‒78.

16. Verma V. Processing of TiCN‒WC‒Ni/Co cermets via conventional and spark plasma sintering technique / V. Verma, M. Kumar // Trans. Ind. Inst. Met. ― 2017. ― Vol. 70, № 3. ― P. 843‒853.

17. Yang, T. Effect of (Ni, Mo) and (W, Ti)C on the microstructure and mechanical properties of TiB2 ceramic tool materials / T. Yang, C. Huang, H. Liu, B. Zou // Mat. Sci. For. ― 2012. ― Vol. 723, № 4. ― P. 233‒237.

18. Zhang, G. Effect of Mo addition on microstructure and mechanical properties of (Ti,W)C solid solution based cermets / G. Zhang, W. Xiong, Q. Yang, Z. Yao // Int. J. Refrac. metals and hard materials. ― 2014. ― Vol. 43. ― P. 77‒82.

19. Vedant, R. Development of ZrB2‒B4C‒Mo ceramic matrix composite for high temperature applications / R. Vedant // A thesis submitted to National institute of Technology Rourkela. ― 2014. ― P. 1‒61.

20. Purwar, A. Development of ZrB2‒SiC‒Ti by multi stage spark plasma sintering at 1600 o C / A. Purwar, R. Mukherjee, K. Ravikumar, S. Ariharan // J. Ceram. Soc. Jap. ― 2016. ― Vol. 124, № 4. ― P. 393‒402.

21. Zinkevich, M. Thermodynamic assessment of the Mo‒Zr system / M. Zinkevich, N. Mattern // J. Phase Equilib. ― 2002. ― Vol. 23, № 2. ― P. 156‒162.

22. Guillermet, A. F. Phase diagram and thermochemical properties of the Ta‒Zr system. An assessment based on Gibbs energy modelling / A. F. Guillermet // J. All. Comp. ― 1995. ― Vol. 226, № 1/2. ― P. 174‒184.


Supplementary files

For citation: Hmelov A.V. Development of dense materials by plasmaspark sintering of oxide‒oxide-free components with different mixtures of metal powders. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(6):27-36. https://doi.org/10.17073/1683-4518-2020-6-27-36

Views: 236

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)