Synthesis of oxide-based materials with a brownmillerite structure of the CaO‒Bi2O3‒Fe2O3 system


https://doi.org/10.17073/1683-4518-2020-4-36-40

Full Text:




Abstract

The single-phase material based on the complex oxide Ca2Fe2O5 doped with bismuth was synthesized by glycine-nitrate combustion. Characterization by X-ray diffractometry, helium pycnometry, scanning electron microscopy, and elemental analysis showed that the material is isostructural to brownmillerite. According to the results of complex thermal analysis together with mass spectrometry, the optimum temperature for the synthesis of the material is about 650 °C and it has thermal stability in a wide temperature range. Using the dilatometry method, the sintering temperature and the thermal expansion coefficient of the material are determined.

About the Author

N. A. Lomanova
ФГБУН «Физико-технический институт имени А. Ф. Иоффе»
Russian Federation


References

1. Shaula, A. L. Ionic conductivity of brownmilleritetype calcium ferrite under oxidizing conditions / A. L. Shaula, Y. V. Pivak, J. C. Waerenborgh [et al.] // Solid State Ionics. ― 2006. ― Vol. 177. ― P. 2923‒2930. DOI: 10.1016/j.ssi.2006.08.030.

2. Vavilapalli, D. S. Photoactive brownmillerite multiferroic KBiFe2O5 and its potential application in sunlight-driven photocatalysis / D. S. Vavilapalli, K. Srikanti, R. Mannam [et al.] // ACS Omega. ― 2018. ― Vol. 3. ― P. 16643‒16650. DOI: 10.1021/acsomega.8b01744.

3. Amorim, B. F. Synthesis of stoichiometric Ca2Fe2O5 nanoparticles by high-energy ball milling and thermal annealing / B. F. Amorim, M. A. Morales, F. Bohn [et al.] // Physica B. ― 2016. ― Vol. 488. ― P. 43‒48. DOI: 10.1016/j.physb.2016.01.029.

4. Безносиков, Б. В. Кристаллы типа браунмиллерита. Кристаллохимия, прогноз новых соединений [препринт]. № 840Ф / Б. В. Безносиков, К. С. Александров. ― Красноярск : Рос. акад. наук. Сиб. отд-ние, Ин-т физики им. Л. В. Киренского. ИФ СО РАН, 2007. ― 27 с.

5. Krüger, H. High-temperature structural phase transition in Ca2Fe2O5 studied by in-situ X-ray diffraction and transmission electron microscopy / H. Krüger, V. Kahlenberg, V. Petricek [et al.] // J. Solid State Chem. ― 2009. ― Vol. 182. ― P. 1515‒1523. DOI:10.1016/j.jssc.2009.03.027.

6. Azzoni, C. B. New insights into the magnetic properties of Ca2Fe2O5 ferrite / C. B. Azzoni, M. C. Mozzati, V. Massarotti [et al.] // Solid State Sci. ― 2007. ― Vol. 9. ― P. 515‒520. DOI:10.1016/j.solidstatesciences.2007.04.013.

7. Dhankhar, S. Synthesis and characterization of polycrystalline brownmillerite cobalt doped Ca2Fe2O5 / S. Dhankhar, G. Bhalerao, K. Baskar, Sh. Singh // AIP Conference Proceedings. ― 2016. ― Vol. 1731. ― P. 140032. DOI: 10.1063/1.4948198.

8. Ломанова, Н. А. Формирование нанокристаллов Bi1‒xCaxFeO3‒δ в условиях глицин-нитратного горения / Н. А. Ломанова, М. В. Томкович, А. В. Осипов [и др.] // Журнал общей химии. ― 2019. ― Т. 89, № 9. ― С. 1448‒1456. DOI: 10.1134/S0044460X19090191.

9. Gusarov, V. V. The thermal effect of melting in polycrystalline systems / V. V. Gusarov // Thermochim. Acta. ― 1995. ― Vol. 256, № 2. ― P. 467‒472. DOI: 10.1016/0040-6031(94)01993-Q.

10. Lomanova, N. A. Influence of synthesis temperature on BiFeO3 nanoparticles formation / N. A. Lomanova, V. V. Gusarov // Nanosystems: Phys. Chem. Math. ― 2013. ― Vol. 4, № 5. ― P. 696‒705.

11. Kovalenko, A. N. Thermodynamics and kinetics of non-autonomous phase formation in nanostructured materials with variable functional properties / A. N. Kovalenko, E. A. Tugova // Nanosystems: Phys. Chem. Math. ― 2018. ― Vol. 9, № 5. ― P. 641‒662. DOI: 10.17586/2220-8054-2018-9-5-641-662.

12. Карпов, О. Н. Формирование нанокристаллов Nd(1‒x)BixFeO3 в условиях глицин-нитратного синтеза / О. Н. Карпов, М. В. Томкович, Е. А. Тугова // Журнал общей химии. ― 2018. ― Т. 88, № 10. ― С. 1692‒1698. DOI: 10.1134/S0044460X18100177.

13. Patel, R. Tunable multiferroic properties of cerium doped bismuth ferrite / R. Patel, P. Sawadh // Nanosystems: Phys. Chem. Math. ― 2019. ― Vol. 10, № 3. ― P. 255‒265. DOI: 10.17586/2220-8054-2019-10-3-255-265.

14. Ломанова, Н. А. Получение нанокристаллических керамических материалов на основе перовскитоподобных оксидов Bi1‒xSrxFeO3‒δ / Н. А. Ломанова, А. В. Осипов, В. Л. Уголков // Новые огнеупоры. ― 2019. ― № 10. ― С. 33‒37.

15. Almjasheva, O. V. The minimum size of oxide nanocrystals:phenomenological thermodynamic vs crystal-chemical approaches / O. V. Almjasheva, N. A. Lomanova, V. I. Popkov [et al.] // Nanosystems: Phys. Chem. Math. ― 2019. ― Vol. 10, № 4. ― P. 428‒437. DOI: 10.17586/2220-8054-2019-10-4-428-437.

16. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomite distances in halides and chaleogenides / R. D. Shannon // Acta Cryst. ― 1976. ― A32. ― Р. 751‒757.


Supplementary files

For citation: Lomanova N.A. Synthesis of oxide-based materials with a brownmillerite structure of the CaO‒Bi2O3‒Fe2O3 system. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(4):36-40. https://doi.org/10.17073/1683-4518-2020-4-36-40

Views: 279

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)