Obtaining porous titanium carbosilicide and its heat resistance


https://doi.org/10.17073/1683-4518-2020-1-57-62

Full Text:




Abstract

The results of studies on the production of titanium carbosilicide with porosities of 20, 40, and 60 % are presented. Experimental samples were obtained using a pore former in the form of NaCl crystals. Sintering of porous samples at temperatures up to 1300 °C was characterized using thermomechanical analysis. The pore structure was studied at the macro- and micro-scale levels using the method of optical microscopy. The nature of the oxidation of the studied samples was revealed by the change in their mass from the duration of the tests and the depth of corrosion in air at 1100 °C. It was found that during high-temperature oxidation, predominantly titanium oxide is formed in the form of rutile using X-ray diffraction analysis and Raman spectroscopy. Ill. 6. Ref. 27. Tab. 2.

About the Authors

A. A. Smetkin
ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»
Russian Federation


V. G. Gilev
ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»
Russian Federation


M. N. Kachenyuk
ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»
Russian Federation


D. S. Vokhmyanin
ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»
Russian Federation


References

1. Potoczek, M. Porosity effect on microstructure, mechanical, and fluid dynamic properties of Ti 2 AlC by direct foaming and gel-casting / M. Potoczek, A. Chmielarz, M. D. M. Innocentini [et al.] // J. Am. Ceram. Soc. ― 2018. ― Vol. 101. ― P. 5346‒5357. DOI:10.1111/jace.15802.

2. Amini, S. Processing, microstructural characterization, and mechanical properties of a Ti 2 AlC/nanocrystalline Mg-matrix composite / S. Amini, C. Y. Ni, M. W. Barsoum // Compos. Sci. Technol. ― 2009. ― Vol. 69. ― P. 414. DOI:10.1016/j.compscitech.2008.11.007.

3. Amini, S. On the effect of texture on the mechanical properties of nanocrystalline Mg-matrix composites reinforced with MAX phases / S. Amini, M. W. Barsoum // Mater. Sci. Eng. A. ― 2010. ― Vol. 527. ― P. 3707‒3718. DOI:10.1016/j.msea.2010.01.073.

4. Kontsos, A. Nanocrystalline Mg-MAX composites: mechanical behavior characterization via acoustic emission monitoring / A. Kontsos, T. Loutas, V. Kostopoulos [et al.] // Acta Mater. ― 2011. ― Vol. 59. ― P. 5716‒5727. DOI:10.1016/j.actamat.2011.05.048.

5. Brodnikovskii, N. P. Structure and mechanical properties of porous titanosilicon carbide Ti3 SiC 2 / N. P. Brodnikovskii, M. P. Burka, D. G. Verbilo [et al.] // Powder Metall. Met. Ceram. ― 2003. ― Vol. 42. ― P. 424‒432.

6. Firstov, S. A. Mechanical properties of porous Ti3 SiC2 /TiC and Ti4 AlN3 /TiN nanolaminates at 20 to 1300 °C / S. A. Firstov, V. F. Gorban, I. I. Ivanova, E. P. Pechkovskii // Powder Metall. Met. Ceram. ― 2010. ― Vol. 49. ― P. 414‒423. DOI:10.1007/s11106-010-9252-2.

7. Firstov, S. A. Effect of the composition and porosity of sintered titanium nanolaminates on their mechanical properties at high temperatures / S. A. Firstov, E. P. Pechkovskii, I. I. Ivanova [et al.] // Strength Mater. ― 2006. ― Vol. 38, № 6. ― P. 24‒36. DOI:10.1007/s11223006-0084-8.

8. Zhang, H. Pore formation process of porous Ti3 SiC2 fabricated by reactive sintering / H. Zhang, X. Liu, Y. Jiang // Materials. ― 2017. ― № 10 (2). ― Р. 163. DOI:10.3390/ma10020163.

9. Hu, L. Simple, inexpensive synthesis of damagetolerant MAX phase foams / L. Hu, I. Karaman, M. Radovic // Am. Ceram. Soc. Bull. ― 2013. ― Vol. 92, № 5. ― P. 31, 32.

10. Лепакова, О. К. Синтез, фазовый состав, структура и прочностные свойства пористых материалов на основе соединения Ti3 SiC 2 / О. К. Лепакова, В. И. Итин, Е. Г. Астафурова [и др.] // Физическая мезомеханика. ― 2016. ― № 2. ― С. 108‒113.

11. Sun, Z. Preparation of reticulated MAX-phase support with morphology-controllable nanostructured ceria coating for gas exhaustcatalyst devices / Z. Sun, Y. Lang, M. Li, Y. Zhou // J. Am. Ceram. Soc. ― 2010. ― Vol. 93. ― P. 2591. DOI:10.1111/j.1551-2916.2010.03776.x.

12. Thomas, T. Fabrication techniques to produce micro and macro porous MAX-phase Ti 2 AlC ceramic / T. Thomas. ― University of Bath, 2014.

13. Bowen, C. Macro-porous Ti 2 AlC MAX-phase ceramics by the foam replication method / C. Bowen, T. Thomas // Ceram. Int. ― 2015. ― Vol. 41. ― P. 12178‒12185. DOI:10.1016/j.ceramint.2015.06.038.

14. Torres, Y. Processing and characterization of porous titanium for implants by using NaCl as space holder / Y. Torres, J. J. Pavón, J. A. Rodríguez // J. Mater. Process. Technol. ― 2012. ― Vol. 212. ― P. 1061. DOI:10.1016/j.jmatprotec.2011.12.015.

15. Metal Foams: Fundamentals and Applications ; ed. by Nihad Dukhan. ―. DEStech Publications, Inc., 2013. ― 458 p. DOI:10.1016/j.applthermaleng.2013.07.002.

16. Wenjuan, N. Processing and properties of porous titanium using space holder technique / N. Wenjuan, B. Chenguang, Q. Guibao, W. Qiang // Mater. Sci. Eng. A. ― 2009. ― Vol. 506. ― P. 148. DOI:10.1016/j.msea.2008.11.022.

17. Wen, C. E. Processing of biocompatible porous Ti and Mg / C. E. Wen, M. Mabuchi, M. Yamada [et al.] // Scripta Mater. ― 2001. ― Vol. 45. ― P. 1147. DOI:10.1016/S13596462(01)01132-0.

18. Esen, Z. Processing of titanium foams using magnesium spacer particles / Z. Esen, S. Bor // Scripta Mater. ― 2007. ― Vol. 56. ― P. 341. DOI:10.1016/j.scriptamat.2006.11.010.

19. Gonzalez-Julian, J. Processing and characterization of porous Ti 2 AlC using space holder technique / J. Gonzalez-Julian, M. Bram // Key Eng. Mater. ― 2016. ― Vol. 704. ― P. 197‒203. DOI:10.4028/www.scientific.net/KEM.704.197.

20. Kim, I.-H. Compression temperature and binder ratio on a process for fabrication of open-celled porous Ti / I.-H. Kim, W. Lee, S.-H. Ko, J. M. Jang // Mater. Res. Bull. ― 2010. ― Vol. 45. ― P. 355. DOI:10.1016/j.materresbull.2009.12.002.

21. Gu, Y. W. Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH 2 / Y. W. Gu, M. S. Yong, B. Y. Tay, C. S. Lim // Mater. Sci. Eng. C. ― 2009. ― Vol. 29. ― P. 1515. DOI:10.1016/j.msec.2008.11.003.

22. Velasco, B. MAX phase Ti 2 AlC foams using a leachable space-holder material / B. Velasco, E. Gordo, S. A. Tsipas // J. Alloys Compd. ― 2015. ― Vol. 646. ― P. 1036‒1042. DOI:10.1016/j.jallcom.2015.05.235.

23. Hu, L. Processing and characterization of porous Ti 2 AlC with controlled porosity and pore size / L. Hu, R. Benitez, S. Basu [et al.] // Acta Mater. ― 2012. ― Vol. 60. ― P. 6266‒6277. DOI:10.1016/j.actamat.2012.07.052.

24. Velasco, B. Influence of porosity on elastic properties of Ti 2 AlC and Ti3 SiC 2 MAX phase foams / B. Velasco, E. Gordo, L. Hu [et al.] // J. Alloys Compd. ― 2018. ― Vol. 764. ― P. 24‒35. DOI:10.1016/j.jallcom.2018.06.027.

25. Гегузин, Я. Е. Физика спекания ; 2-е изд., перераб. и доп. / Я. Е. Гегузин. ― М. : Наука, 1984. ― 312 с.

26. Firstov, S. A. High-temperature short-term and long hardness of sintered compact and porous titaniumsiliceous carbide Ti3 SiC 2 / S. A. Firstov, E. P. Pechkovsky // Science and Sintering. ― 2004. ― Vol. 36, № 1. ― P. 11‒20. https://doi.org/10.2298/SOS0401011F.

27. Antsiferov, V. N. Role of bulk and mass effects of reactions in reaction sintering processes / V. N. Antsiferov, V. G. Gilev // Russian Journal of Non-Ferrous Metals. ― 2016. ― Vol. 57, № 7. ― Р. 715‒722. (Scopus). DOI:10.3103/S1067821216070026.


Supplementary files

For citation: Smetkin A.A., Gilev V.G., Kachenyuk M.N., Vokhmyanin D.S. Obtaining porous titanium carbosilicide and its heat resistance. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(1):57-62. https://doi.org/10.17073/1683-4518-2020-1-57-62

Views: 359

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)