High-density micro- and nanogranular ceramics. Transition of open pores to closed ones. Part 3. Sintering of workpieces without external pressure


https://doi.org/10.17073/1683-4518-2020-1-39-50

Full Text:




Abstract

An explanation of the processes occurring in obtaining high-density micro- and nanogranular ceramics without the use of external pressure on the basis of data accumulated in the literature is proposed. It is known that pore growth begins after the beginning of the transition of open pores to closed ones, which begins at about 30 % open porosity. It is necessary to maintain open pores to the maximum possible total density of sintered ceramics. The article describes different methods of sintering ceramics, allowing to obtain high-density non-porous ceramics. Ill. 6. Ref. 74. Tab. 1.

About the Author

A. V. Belyakov
ФГБОУ ВО «Российский химико-технологический университет имени Д. И. Менделеева»
Russian Federation


References

1. Беляков, А. В. Высокоплотная микро- и нанозернистая керамика. Переход открытых пор в закрытые. Подготовка порошков, формовочной массы, формование. Ч. 1 / А. В. Беляков // Новые огнеупоры. ― 2019. ― № 11. ― С.

2. Беляков, А. В. Высокоплотная микро- и нанозернистая керамика. Переход открытых пор в закрытые. Удаление связки. Ч. 2 / А. В. Беляков // Новые огнеупо ры. ― 2019. ― № 12. ― С.

3. Shatokha, V. Sintering ― methods and products ; ed. by V. Shatokha. ― Croatia : Published by InTech, 2012. ― 316 p.

4. Ertuğ, B. Sintering applications ; ed. by B. Ertuğ. ― Croatia : Published by InTech, 2013. ― 342 p.

5. Lakshmanan, A. Sintering of ceramics ― new emerging techniques ; ed. by A. Lakshmanan. ― Croatia : Published by InTech, 2012. ― 624 p.

6. Rahaman, M. N. Sintering of ceramics / M. N. Rahaman. ― Boca Raton : CRC Press, 2007. ― 388 p.

7. Беляков, А. В. Синергетический и квазихимический подходы в технологии керамики / А. В. Беляков // Стекло и керамика. ― 2003. ― № 9. ― С. 21‒27. [Belyakov, A. V. Synergetic and quasichemical approaches in ceramic technology (a review) / A. V. Belyakov // Glass and Ceramics. ― 2003. ― Vol. 60, № 9/10. ― P. 274‒279.]

8. Беляков, А. В. Причины аномального роста кристаллов при спекании керамики после начала образования закрытых пор / А. В. Беляков // Стекло и керамика. ― 2007. ― № 1. ― С. 16‒20. [Belyakov, A. V. Causes of anomalous crystal growth in sintering ceramics after formation of closed pores began / A. V. Belyakov // Glass and Ceramics. ― 2007. ― Vol. 64, № 1/2. ― P. 17‒21.]

9. Беляков, А. В. Получение прозрачной керамики. Синергетический подход / А. В. Беляков // Стекло и ке рамика. ― 2009. ― № 12. ― С. 18‒25. [Belyakov, A. V. Production of transparent ceramic. Synergetic approach / А. В. Беляков // Glass and Ceramics. ― 2009. ― Vol. 66, № 11/12. ― P. 416‒422.]

10. Беляков, А. В. Главные бифуркации при обжиге плотной оксидной керамики / А. В. Беляков // Стекло и керамика. ― 2000. ― № 10. ― С. 13‒17. [Belyakov, A. V. Principal bifurcations in firing of compact oxide ceramics / A. V. Belyakov // Glass and Ceramics. ― 2000. ― Vol. 57, № 10. ― P. 345‒349.]

11. Беляков, А. В. Локальные уплотнения при спекании керамики и воспроизводимость структуры / А. В. Беляков, Е. А. Брыгина // Стекло и керамика. ― 1998. ― № 10. ― С. 10‒13. [Belyakov, A. V. Local compaction areas in sintering of ceramics and structural reproducibility / A. V. Belyakov, E. A. Brygina // Glass and Ceramics. ― 1998. ― Vol. 55, № 9. ― P. 307‒309.]

12. Беляков, А. В. Определение локальных уплотнений в прессовках / А. В. Беляков, А. С. Енько // Стекло и керамика. ― 1999. ― № 12. ― С. 19‒22. [Belyakov, A. V. Identification of local compactions in ceramics / A. V. Belyakov, A. S. Yen`ko // Glass and Ceramics.― 2000.― Vol. 56, № 11/12. ― P. 389‒392.]

13. Воробьев, В. К. Измерение электропроводности керамических прессовок при спекании / В. К. Воробьев, Д. Н. Полубояринов, В. С. Бакунов // Тр. ин-та : МХТИ им. Д. И. Менделеева. ― 1971. ― Вып. 68. ― C. 118‒121.

14. Семириков, И. С. Новые способы, кинетика и механизм спекания оксидной керамики / И. С. Семириков, Д. С. Баранов // Вестник УГТУ. Физикохимия и технология оксидно-силикатных материалов. ― 2000. ― № 1. ― С. 157‒160.

15. German, R. M. Sintering theory and practice / R. M. German. ― New York : John Wiley & Sons, 1996. ― 568 p.

16. German, R. M. Review: liquid phase sintering / R. M. German, P. Suri, S. J. Park // J. Mater. Sci. ― 2009. ― Vol. 44, № 1. ― P. 1‒39. Режим доступа : http://www.springerlink.com/content/eu8804w248232124/.

17. Dong, W. Liquid phase sintering of alumina. II. Penetration of liquid phase into model microstructures / W. Dong, H. Jain, M. P. Harmer // J. Am. Ceram. Soc. ― 2005. ― Vol. 88, № 7. ― P. 1708‒1713.

18. Макаров, Н. А. Особенности спекания корундовой керамики, модифицированной эвтектическими добавками / Н. А. Макаров // Стекло и керамика. ― 2006. ― № 4. ― С. 16–18. [Makarov, N. A. Sintering specifics of corundum ceramics modified with eutectic additives / N. A. Makarov // Glass and Ceramics. ― 2006. ― Vol. 63, № 3/4. ― P. 119‒121.]

19. Макаров, Н. А. Композиционный материал в системе оксид алюминия ‒ диоксид циркония / Н. А. Макаров // Стекло и керамика. ― 2007. ― № 4. ― С. 12–15. [Makarov, N. A. Composite material in the aluminum oxide-zirconium dioxide system / N. A. Makarov // Glass and Ceramics. ― 2007. ― Vol. 64, № 3/4. ― P. 120‒123.]

20. Евтеев, А. А. Керамика в системе ZrO 2 ‒Al2 O 3 с добавками эвтектических составов / А. А. Евтеев, Д. О. Лемешев, С. В. Житнюк [и др.] // Стекло и керамика. ― 2011. ― № 8. ― С. 23‒27. [Evteev, A. A. ZrO 2 ‒Al2 O 3 ceramic with eutectic additives / A. A. Evteev, D. O. Lemeshev, S. V. Zhitnyuk [et al.] // Glass and Ceramics. ― 2011. ― Vol. 68, № 7/8. ― P. 258‒262.]

21. Yu, Y.-D. Microstructural characterization and microstructural effects on the thermal conductivity of AlN(Y2 O3 ) ceramics / Y.-D. Yu, A. M. Hundere, R. Høier [et al.] // J. Eur. Ceram. Soc. ― 2002. ― Vol. 22. ― P. 247‒252.

22. Беляков, А. В. Изготовление однофазной высокочистой плотной керамики из трудноспекаемых сложных оксидов / А. В. Беляков, Е. Б. Бендовский // Стекло и керамика. ― 2015. ― № 6. ― С. 23‒28. [Belyakov, A. V. Fabrication of high-purity singlephase dense ceramic from high-sintering complex oxides / A. V. Belyakov, E. B. Bendovskii // Glass and Ceramics. ― 2015. ― Vol. 72, № 5/6. ― P. 206‒211.]

23. Harmer, M. P. Fast firing ― microstructural benefits / M. P. Harmer, R. J. Brook // Trans. J. Brit. Ceram. Soc. ― 1981. ― Vol. 80. ― P. 147, 148.

24. Mostaghaci, H. Production of dense and fine grain size BaTiO 3 by fast firing / H. Mostaghaci, R. J. J. Brook // Trans. J. Brit. Ceram. Soc. ― 1983. ― Vol. 82, № 5. ― P. 167‒170.

25. Zheng, X. Superfast sintering of nanocrystalline Y2 O3 ceramics / X. Zheng, Z. Y. Fu, J. Y. Zhang [et al.] // Adv. Mater. Res. ― 2009. ― Vol. 66. ― P. 100‒103.

26. Garsia, D. A. Advanced ceramics with dense and fine-grained microstructures through fast firing / D. A. Garsia, A. N. Klein, D. Hotza // Rev. Adv. Mater. Sci. ― 2012. ― Vol. 30. ― P. 273‒281.

27. Garsia, D. A. Building a sintering front through fast firing / D. A. Garsia, D. Hotza, R. Janssen // Int. J. Appl. Ceram. Technol. ― 2011. ― Vol. 8 ― P. 1486‒1493.

28. Kim, Y. W. Pressureless sintering of alumina titanium carbide composite / Y. W. Kim, J. G. Lee // J. Am. Ceram. Soc. ― 1989. ― Vol. 72. ― P.1333‒1337.

29. Rybakov, K. I. Microwave applications / K. I. Rybakov, E. A. Olevsky, E. V. Krikun // In book: National Research Council. ― 2013. ― P. 79‒116.

30. Rybakov, K. I. Microwave sintering: fundamentals and modeling / K. I. Rybakov, E. A. Olevsky, E. V. Krikun // J. Am. Ceram. Soc. ― 2013. ― Vol. 96, № 4. ― P. 1003‒1020.

31. Sudiana, I. N. Densification of alumina ceramics sintered by using submillimeter wave gyrotron / I. N. Sudiana, R. Ito, S. Inagaki [et al.] // Journal of Infrared, Millimeter and Terahertz Waves. ― 2013. ― Vol. 34, № 10. ― P. 627‒638.

32. Zgalat-Lozynskyy, O. Densification kinetics and structural evolution during microwave and pressureless sintering of 15 nm titanium nitride powder / O. ZgalatLozynskyy, A. Ragulya // Nanoscale Research Letters. ― 2016. ― Vol. 11, № 1. ― P. 1‒9.

33. Clark, D. E. Microwave solutions for ceramic engineers ; ed. by D. E. Clark, D. C. Folz, C. E. Folgar [et al.]. ― New York : Wiley, 2005. ― 494 p.

34. Pat. 3900542 USA. Process for sintering finely divided particulates and resulting ceramic products / Palmour III H., Huckabee M. L. ; assignee: Arthur D. Little, Inc., Cambridge, Mass. ; filed: apr. 26, 1973 ; appl. № US 35451573 ; pub. 19.08.1975.

35. Huckabee, M. Rate-controlled sintering of fine-grained alumina / M. Huckabee, H. Palmour III // Am. Ceram. Soc. Bull. ― 1972. ― Vol. 51, № 7. ― P. 574‒576.

36. Huckabee, M. L. Rate-controlled sintering as a processing method / M. L. Huckabee, T. M. Hare, H. Palmour III // Proceedings of the fourteenth university conference on ceramic science. Vol. 11 of the series ; ed. by H. Palmour III, R. F. Davis, T. M. Hare. ― New York and London : Plenum Press, 1978. ― P. 205‒215.

37. Palmour III, H. Rate-controlled sintering revisited / H. Palmour III, T. M. Hare // Proc. 6th world round table conf. on sintering, Herceg-Novi, Yugoslavia ; ed. by G. C. Kuczynski [et al.]. ― New York : Plenum Press, 1987. ― P. 17‒34.

38. Скороход, В. В. Спекание с контролируемой скоростью нагрева как способ управления микроструктуры керамики и подобных материалов / В. В. Скороход, А. В. Рагуля // Порошковая металлургия. ― 1994. ― № 3/4. ― С. 1‒10.Skorokhod, V. V. Sintering at a controlled rate as a method for regulating the microstructure of ceramics and similar sintered materials / V. V. Skorokhod, A. V. Ragulya // Russ. Non-Ferr. Metals. ― 1995. ― Vol. 33. ― P. 109‒117.

39. Brook, R. J. Fabrication principles for the production of ceramics with superior mechanical properties / R. J. Brook // Proc. Brit. Ceram. Soc. ― 1982. ― Vol. 32, № 3. ― P. 7‒24.

40. Xie, Z. P. Densification and grain growth of alumina by microwave processing / Z. P. Xie, J. L. Yang, Y. Huang // Mater. Lett. ― 1998. ― Vol. 37. ― P. 215‒220.

41. Opfermann, J. Thermische Analyseverfahren in Industrie und Forschung / J. Opfermann, G. Wilke, W. Ludwig [et al.] // VI. Herbstschule, Meisdorf 14.18. Nov. 1988, Friedrich-Schiller-Universität, Jena, 1991. ― S. 51‒79.

42. Kaisersberger, E. Kinetische Analyse thermischer Effekte / E. Kaisersberger, J. Opfermann // Laborpraxis. ― 1992. ― Bd 4. ― S. 360‒364.

43. Opfermann, J. An improved method for invariant kinetic parameters and a high level of model differentiation / J. Opfermann, F. Giblin, J. Mayer [et al.] // Am. Lab. ― 1995. ― Vol. 27, № 4. ― P. 34–41.

44. Opfermann, J. Kinetic analysis using multivariate nonlinear regression. I. Basic concepts / J. Opfermann // Therm. Anal. and Calorim. ― 2000. ― Vol. 60, № 2. ― P. 641‒658.

45. Opfermann, J. R. Model-free analysis of thermoanalytical data — advantages and limitations / J. R. Opfermann, E. Kaisersberger, H. J. Flammersheim // Thermochim. Acta. ― 2002. ― Vol. 391, № 1/2. ― P. 119‒127.

46. Müller, A. C. Modelling and optimisation of solid electrolyte sintering behaviour by thermokinetic analysis / A. C. Müller, J. R. Opfermann, E. Ivers-Tifféea // Thermochim. Acta. ― 2004. ― Vol. 414, № 1. ― P. 11‒17.

47. Opfermann, J. Simulation of the sintering behavior of a ceramic green body using advanced thermokinetic analysis results / J. Opfermann, J. Blumm, W. D. Emmerich // Thermochim. Acta. ― 1998. ― Vol. 318, № 1/2. ― P. 213‒220.

48. Dilatometer Special Software. LINSEIS. Software for dilatometers. [Электронный ресурс] ― 6 p. Режим доступа : https://www.linseis.com/wp-content/uploads/2018/06/Dilatometer_Special_Software_01.pdf.

49. Zgalat-Lozynskyy, O. Spark plasma and rate controlled sintering of high-melting point nanocomposites / O. ZgalatLozynskyy, A. Ragulya, M. Herrmann // Proceedings of the international conference nanomaterials: applications and properties. ― 2012. ― Vol. 1, № 3. ― P. 03CNN05 1‒4. Режим доступа : https://www.academia.edu/33922701/ Spark_Plasma_and_Rate_Controlled_Sintering_of_HighMelting_Point_Nanocomposites.

50. Chen, P.-L. Grain boundary mobility in Y2 O3 : defect mechanism and dopant effects / P.-L. Chen, I.-W. Chen // J. Am. Ceram. Soc. ― 1996. ― Vol. 79, № 7. ― P. 1801‒1809.

51. Chen, P.-L. Sintering of fine oxide powder. I. Microstructural evolution / P.-L. Chen, I.-W. Chen // J. Am. Ceram. Soc. ― 1996. ― Vol. 79, № 12. ― P. 3129‒3141.

52. Chen, P.-L. Sintering of fine oxide powders. II. Sintering mechanisms / P.-L. Chen, I.-W. Chen // J. Am. Ceram. Soc. ― 1997. ― Vol. 80, № 3. ― P. 637‒645.

53. Chen, I.-W. Sintering dense nanocrystalline ceramics without final-stage grain growth / I.-W. Chen, X.-H. Wang // Nature. ― 2000. ― Vol. 404, № 6774. ― P. 168‒171.

54. da Silva Jr, J. F. Two-step sintering applied to ceramics / J. F. da Silva Jr, R. M. do Nascimento, U. U. Gomes [et al.] // Sintering of ceramics ― new emerging techniques ; ed. by dr. A. Lakshmanan. Croatia : Published by InTech, 2012. ― 610 p.

55. Rajeswari, K. Micro structural control of stabilized zirconia ceramics (8YSZ) through modified conventional sintering methodologies / K. Rajeswari, A. R. Reddy, U. S. Hareesh [et al.] // Science of Sintering. ― 2010. ― Vol. 42, № 1. ― P. 91‒97.

56. Wang, X.-H. Two-step sintering of ceramics with constant grain-size. I. Y2 O 3 / X.-H. Wang, P.-L. Chen, I.-W. Chen // J. Am. Ceram. Soc. ― 2006. ― Vol. 89, № 2. ― P. 431‒437.

57. Maca, K. Two-step sintering of oxide ceramics with various crystal structures / K. Maca, V. Pouchly, P. Zalud // J. Eur. Ceram. Soc. ― 2010. ― Vol. 30, № 2. ― P. 583‒589.

58. Hesabi, Z. R. Processing of titania nanoceramics via conventional sintering, two-step sintering and two-step sintering assisted by phase transformation / Z. R. Hesabi, M. Mazaheri. Advanced materials for sustainable developments: Ceramic engineering and science proceedings. ― Vol. 31, № 9 ; ed. by H.-T. Lin, A. Gyekenyesi, L. An [et al.]. ― New York : John Wiley and Sons Ltd, 2010. ― 150 p.

59. Shahraki, M. M. Two-step sintering of ZnO varistors / M. M. Shahraki, S. A. Shojaee, M. A. F. Sani [et al.] // Solid State Ionics. ― 2011. ― Vol. 190. ― P. 99‒105.

60. Анненков, Ю. М. Двухстадийная технология спекания корундовой и циркониевой керамики / Ю. М. Анненков, А. О. Окенова, А. С. Ивашутенко // Институт государственного управления, права и инновационных технологий (ИГУПИТ). Интернет-журнал «Науковеде ние». ― 2012. ― № 4. ― С. 1‒6. Режим доступа : http:// naukovedenie.ru120ТВН412.

61. Wang, X.-H. Two-step sintering of ceramics with constant grain-size. II. BaTiO 3 and Ni‒Cu‒Zn ferrite / X.- H. Wang, X.-Y. Deng, H.-L. Bai [et al.] // J. Am. Ceram. Soc. ― 2006. ― Vol. 89, № 2. ― P. 438‒443.

62. Xie, Y. Particle size control, sinterability and piezoelectric properties of BaTiO 3 prepared by a novel composite-hydroxide-mediated approach / Y. Xie, T. Kimura, S. Yin [et al.] // Materials Sciences and Applications. ― 2011. ― Vol. 2, № 7. ― P. 758‒764.

63. Fathi, M. H. Two-step sintering of dense, nanostructural forsterite / M. H. Fathi, M. Kharaziha // Mater. Lett. ― 2009. ― Vol. 63, № 17. ― P. 1455‒1458.

64. Karaki, T. Barium titanate piezoelectric ceramics manufactured by two-step sintering / T. Karaki, K. Yan, M. Adachi // Jpn. J. Appl. Phys. ― 2007. ― Vol. 46, № 10B. ― P. 7035‒7038.

65. Rafferty, A. Sintering behaviour of cobalt ferrite ceramic / A. Rafferty, T. Prescott, D. Brabazon // Ceram. Int. ― 2008. ― Vol. 34, № 1. ― P. 15‒21.

66. Wang, X.-H. New progress in development of ferroelectric and piezoelectric Nanoceramics (Review) / X.-H. Wang, I-Wei Chen, X.-Y. Deng [et al.] // J. Adv. Ceram. ― 2015. ― Vol. 4, № 1. ― P. 1‒21.

67. Hesabi, Z. R. Enhanced electrical conductivity of ultrafine-grained 8Y2 O 3 stabilized ZrO 2 produced by two-step sintering technique / Z. R. Hesabi, M. Mazaheri, T. Ebadzadeh // Alloys Compd. ― 2010. ― Vol. 494, № 1. ― P. 362‒365.

68. Hao, J. G. Improved piezoelectric properties of (Kx Na1‒ x )0,94 Li0,06 NbO 3 lead-free ceramics fabricated by combining two-step sintering / J. G. Hao, W. F. Bai, B. Shen [et al.] // Alloys Compd. ― 2012. ― Vol. 534. ― P. 13‒19.

69. Salahi, E. Effect of processing on mechanical properties of zirconia alumina hydroxyapatite nanocomposites fabricated by two-step sintering / E. Salahi, M. Alidoustib, S. Isafi [et al.] // Proceedings of the 4th international conference on nanostructures (ICNS4). 12‒14 March, 2012, Kish Island, I.R. Iran. ― P. 266‒269.

70. Moon, S.-M. Nanostructural and physical features of BaTiO 3 ceramics prepared by two-step sintering / S.-M. Moon, X. Wang, N.-H. Cho // J. Ceram. Soc. Jpn. ― 2009. ― Vol. 117, № 1366. ― P. 729‒731.

71. Wang, C.-J. Two-step sintering of fine alumina–zirconia ceramics / C.-J. Wang, C.-Y. Huang, Y.-C. Wu // Ceram. Int. ― 2009. ― Vol. 35, № 4. ― Р. 1467‒1472.

72. Lóh, N. J. A review of two-step sintering for ceramics / N. J. Lóh, L. Simão, C. A. Faller [et al.] // Ceram. Int. ― 2016. ― Vol. 142. ― P. 12556‒12572.

73. Maeda, M. Fabrication and superconducting properties of highly dense MgB 2 bulk using a two-step sintering method / M. Maeda, Y. Zhao, Y. Watanabe [et al.] // IEEE Trans. Appl. Superconductivity. ― 2009. ― Vol. 19, № 3. ― P. 2763‒2766.

74. Kim, K.-W. Preparation of fine grained SiC at reduced temperature by two-step sintering / K.-W. Kim, K.-S. Oh, H. Lee [et al.] // Archives of Metallurgy and Materials. ― 2015. ― Vol. 60, № 2. ― P. 1539‒1542.


Supplementary files

For citation: Belyakov A.V. High-density micro- and nanogranular ceramics. Transition of open pores to closed ones. Part 3. Sintering of workpieces without external pressure. NOVYE OGNEUPORY (NEW REFRACTORIES). 2020;(1):39-50. https://doi.org/10.17073/1683-4518-2020-1-39-50

Views: 509

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)