Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Влияние ультразвуковой обработки на фазовый состав гидроксилапатита, синтезированного с использованием гидро термальной-методики


https://doi.org/10.17073/1683-4518-2019-10-48-53

Полный текст:




Аннотация

Рассмотрено влияние длительности ультразвуковой обработки после проведения гидротермального синтеза образцов гидроксилапатита (ГА), синтезированных в системе прекурсоров Ca(NO3)2‒(NH4)2HPO4-NH4OH на фазовый состав и степень кристалличности синтезированных образцов. Образцы ГА были исследованы с использованием методов рентгеновской дифракции и инфракрасной Фурье-спектроскопии. Исследование показало, что ультразвуковая обработка вне зависимости от длительности не оказывает влияния на фазовый состав и степень кристалличности полученных образцов ГА. Во всех исследованных образцах установлено наличие фазы ГА Ca10(PO4)6(OH)2 со степенью кристалличности 0,97

Об авторах

А. Г. Юдин
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Россия
к. т. н.
Москва


Д. В. Лысов
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Россия
Москва


К. О. Чупрунов
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Россия
Москва


Д. В. Лейбо
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Россия
Москва


Е. А. Колесников
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Россия
Москва


Д. В. Кузнецов
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Россия

к. т. н.
Москва



И. А. Ильиных
ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС»
Россия
Москва


Список литературы

1. Mondal, S. 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications / S. Mondal, U. Pal // Journal of Drug Delivery Science and Technology. ― 2019. ― Р. 101131. https://doi.org/10.1016/j.jddst.2019.101131.

2. Kalita, S. J. Nanocrystalline calcium phosphate ceramics in biomedical engineering / S. J. Kalita, A. Bhardwaj, H. A. Bhatt // Mater. Sci. Eng., C. ― 2007. ― Vol. 27, № 3. ― P. 441‒449. https://doi.org/10.1016/j.msec.2006.05.018.

3. Bose, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review / S. Bose, S. Tarafder // Acta Biomaterialia. ― 2012. ― Vol. 8, № 4. ― Р. 1401‒1421. https://doi.org/10.1016/j.actbio.2011.11.017.

4. Bose, S. Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties / S. Bose, S. Dasgupta, S. T. A. Bandyopadhyay // Acta Biomaterialia. ― 2010. ― Vol. 6, № 9. ― P. 3782‒3790. https://doi.org/10.1016/j.actbio.2011.11.017.

5. Sadat-Shojai, M. Synthesis methods for nanosized hydroxyapatite with diverse structures / M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi // Acta Biomaterialia. ― 2013. ― Vol. 9, № 8. ― P. 7591‒7621. https://doi.org/10.1016/j.actbio.2013.04.012.

6. Szcześ, A. Synthesis of hydroxyapatite for biomedical applications / A. Szcześ, L. Hołysz, E. Chibowski // Adv. Colloid Interface Sci. ― 2017. ― Vol. 249. ― P. 321‒330. https://doi.org/10.1016/j.cis.2017.04.007.

7. Fihri, A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis / A. Fihri, C. Len, R. S. Varma, A. Solhy //Coord. Chem. Rev. — 2017. ― Vol. 347. ― P. 48‒76. https://doi.org/10.1016/j.ccr.2017.06.009.

8. Pramanik, S. Development of high strength hydroxyapatite by solid-state-sintering process / S. Pramanik, A. K. Agarwal, K. N. Rai, A. Garg // Ceram. Int. ― 2007. ― Vol. 33, № 3. ― С. 419‒426. https://doi.org/10.1016/j.ceramint.2005.10.025.

9. Swain, S. K. Comparative study: Hydroxyapatite spherical nanopowders and elongated nanorods / S. K. Swain, D. Sarkar // Ceram. Int. ― 2011. ― Vol. 37, № 7. ― С. 2927‒2930. https://doi.org/10.1016/j.ceramint.2011.03.077.

10. Cai, Y. Synthesis of oriented hydroxyapatite crystals: Effect of reaction conditions in the presence or absence of silk sericin / Y. Cai, D. Mei, T. Jiang, J. Yao // Mater. Lett. ― 2010. ― Vol. 64, № 24. ― P. 2676‒2678. https://doi.org/10.1016/j.matlet.2010.08.071.

11. Chen, J. A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders / J. Chen, Y. Wang, X. Chen [et al.] // Mater. Lett. ― 2011. ― Vol. 65, № 12. ― P. 1923‒1926. https://doi.org/10.1016/j.matlet.2011.03.076.

12. Rajabi-Zamani, A. H. Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide solgel method / A. H. Rajabi-Zamani, A. Behnamghader, A. Kazemzadeh // Mater. Sci. Eng., C. ― 2008. ― Vol. 28, № 8. ― P. 1326‒1329. https://doi.org/10.1016/j.msec.2008.02.001.

13. Shum, H. C. Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite / H. C. Shum, A. Bandyopadhyay, S. Bose, D. A. Weitz // Chem. Mater. ― 2009. ― Vol. 21, № 22. ― P. 5548‒5555. https://doi.org/10.1021/cm9028935.

14. Zhou, W. Y. Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion / W. Y. Zhou, M. Wang, W. L. Cheung, B. C. Guo, D. M. Jia // J. Mater. Sci. ― Mater. Med. ― 2008. ― Vol. 19, № 1. ― P. 103‒110. DOI:10.1007/s10856-007-3156-9.

15. Sturgeon, J. L. Effects of carbonate on hydroxyapatite formed from CaHPO 4 and Ca4 (PO4 )2 O / J. L. Sturgeon, P. W. Brown // J. Mater. Sci. ― Mater. Med. ― 2009. ― Vol. 20, № 9. ― P. 1787‒1794. DOI:10.1007/s10856-009-3752-y.

16. Park, H. C. Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of α-TCP / H. C. Park, D. J. Baek, Y. M. Park, S. Y. Yoon, R. Stevens // Journal of materials science. ― 2004. ― Vol. 39, № 7. ― P. 2531‒2534.

17. Zhang, G. Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method / G. Zhang, J. Chen, S. Yan [et al.] // Materials letters. ― 2011. ― Vol. 65, № 3. ― P. 572‒574. https://doi.org/10.1016/j.matlet.2010.10.078.

18. Lee, D. K. Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms / D. K. Lee, J. Y. Park, M. R. Kim, D.-J. Jang // Cryst. Eng. Comm. ― 2011. ― Vol. 13, № 17. ― P. 5455‒5459. DOI:10.1039/C1CE05511A.

19. Abdel-Aal, E. A. Mechanochemical–hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design / E. A. Abdel-Aal, A. A. El-Midany, H. El-Shall // Mater. Chem. Phys. ― 2008. ― Vol. 112, № 1. ― P. 202‒207. https://doi.org/10.1016/j.matchemphys.2008.05.053.

20. Sun, Y. Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions / Y. Sun, G. G. Dongliang, T. Z. Wang // J. Phys. Chem. Solids. ― 2007. ― Vol. 68, № 3. ― P. 373‒377. https://doi.org/10.1016/j.jpcs.2006.11.026.

21. Amer, W. Synthesis of mesoporous nanohydroxyapatite by using zwitterions surfactant / W. Amer, K. Abdelouahdi, H. R. Ramananarivo [et al.] // Mater. Lett. ― 2013. ― Vol. 107. ― P. 189‒193. https://doi.org/10.1016/j.matlet.2013.05.103.

22. Amer, W. Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates / W. Amer, K. Abdelouahdi, H. R. Ramananarivo [et al.] // Cryst. Eng. Comm. ― 2014. ― Vol. 16, № 4. ― P. 543‒549. DOI:10.1039/C3CE42150C.

23. Honarmandi, P. Milling media effects on synthesis, morphology and structural characteristics of single crystal hydroxyapatite nanoparticles / P. Honarmandi, P. Honarmandi, A. Shokuhfar, B. Nasiri-Tabrizi, R. EbrahimiKahrizsangi // Advances in Applied Ceramics. ― 2010. ― Vol. 109, № 2. ― P. 117‒122. https://doi.org/10.1179/174367509X12447975734230.

24. Fathi, M. H. Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite / M. H. Fathi, E. M. Zahrani // J. Cryst. Growth. ― 2009. ― Vol. 311, № 5. ― P. 1392‒1403. https://doi.org/10.1016/j.jcrysgro.2008.11.100.

25. Giardina, M. A. Synthesis of nanocrystalline hydroxyapatite from Ca(OH) 2 and H3 PO 4 assisted by ultrasonic irradiation / M. A. Giardina, M. A. Fanovich // Ceram. Int. ― 2010. ― Vol. 36, № 6. ― P. 1961‒1969. https://doi.org/10.1016/j.ceramint.2010.05.008.

26. Rouhani, P. Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation / P. Rouhani, N. Taghavinia, S. Rouhani // Ultrasonics Sonochemistry. ― 2010. ― Vol. 17, № 5. ― P. 853‒856. https://doi.org/10.1016/j.ultsonch.2010.01.010.

27. Märten, A. On the mineral in collagen of human crown dentine / A. Märten, P. Fratzl, P. Zaslansky // Biomaterials. ― 2010. ― Vol. 31, № 20. ― P. 5479‒5490. https://doi.org/10.1016/j.biomaterials.2010.03.030.

28. Sadat-Shojai, M. Synthesis methods for nanosized hydroxyapatite with diverse structures / M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi // Actabiomaterialia. ― 2013. ― Vol. 9, № 8. ― P. 7591‒7621. https://doi.org/10.1016/j.actbio.2013.04.012.

29. Vallet-Regi, M. Calcium phosphates as substitution of bone tissues / M. Vallet-Regi, J. M González-Calbet // Prog. Solid State Chem. ― 2004. ― Vol. 32, № 1/2. ― P. 1‒31. https://doi.org/10.1016/j.progsolidstchem.2004.07.001.

30. Rabiei, A. Microstructure, mechanical properties, and biological response to functionally graded HA coatings / A. Rabiei, T. Blalock, B. Thomas [et al.] // Mater. Sci. Eng., C. ― 2007. ― Vol. 27, № 3. ― P. 529‒533. https://doi.org/10.1016/j.msec.2006.05.036.

31. Chen, L. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells / L. Chen, J. M. Mccrate, J. C.-M. Lee, H. Li // Nanotechnology. ― 2011. ― Vol. 22, № 10. ― P. 105708. doi:10.1088/0957-4484/22/10/105708.

32. Yudin, A. Microwave treatment and pH influence on hydroxyapatite morphology and structure / A. Yudin, I. Ilinykh, K. Chuprunov [et al.] // Journal of Physics: Conference Series. ― IOP Publishing. ― 2019. ― Vol. 1145, № 1. ― P. 012003. doi:10.1088/1742-6596/1145/1/012003.

33. Chuprunov, K. The ultrasound effect on the morphological properties of hydroxyapatite / K. Chuprunov, E. Kolesnikov, I. Ilinykh [et al.] // MATEC Web of Conferences. ― EDP Sciences. ― 2018. ― Vol. 243. ― P. 00012. https://doi.org/10.1051/matecconf/201824300012.

34. Berzina, L. Infrared spectroscopy ― materials science, engineering and technology / L. Berzina, N. Borodajenko. ― IntechOpen. ― 2012. DOI:10.5772/2055.


Дополнительные файлы

Для цитирования: Юдин А.Г., Лысов Д.В., Чупрунов К.О., Лейбо Д.В., Колесников Е.А., Кузнецов Д.В., Ильиных И.А. Влияние ультразвуковой обработки на фазовый состав гидроксилапатита, синтезированного с использованием гидро термальной-методики. Новые огнеупоры. 2019;(10):48-53. https://doi.org/10.17073/1683-4518-2019-10-48-53

For citation: Yudin A.G., Lysov D.V., Chuprunov K.O., Leibo D.V., Kolesnikov E.A., Kuznetsov D.V., Ilyinykh I.A. The effect of ultrasonic treatment on the phase composition of hydroxylapatite synthesized using a hydrothermal technique. NOVYE OGNEUPORY (NEW REFRACTORIES). 2019;(10):48-53. (In Russ.) https://doi.org/10.17073/1683-4518-2019-10-48-53

Просмотров: 307

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)