Synthesis of LaBe-ZrBz powder mixture by borothermal reduction of La(OHh and ZrO(OH)2 co-precipitated in a boron suspension
https://doi.org/10.17073/1683-4518-2019-8-38-43
Abstract
The eutectic composition powder mixture was synthesized in the LaB6-ZrB2 system by borothermal reduction of a mixture of La(OH)3 and ZrO(OH)2 in vacuum at isothermal holding temperatures from 1200 to 1600 °С. A mixture of hydroxides was obtained by co-precipitation from aqueous solutions of lanthanum and zirconyl nitrates in a suspension of amorphous boron. The effect of boron excess on the phase and elemental composition of a mixture of borides was studied. The dependence of the dispersion of the obtained powders on the synthesis temperature was established. Ill. 5. Ref. 45.
About the Authors
D. D. NesmelovRussian Federation
O. A. Kozhevnikov
Russian Federation
S. V. Vikhman
Russian Federation
E. S. Novoselov
Russian Federation
I. V. Shatalkina
Russian Federation
References
1. Taran, А. Thermionic emission of LaB6-ZrB2 quasi binary eutectic alloy with different ZrB2 fibers orientation / A. Taran, D. Voronovich, D. Oranskaya [et al.] // Functional Materials. — 2013. — Vol. 20, № 4. — P. 485-488.
2. Paderno, Y. В. Thermionic properties of LaB6-(Ti06Zr0,4)B2 material / Y. В. Paderno, А. А. Taran, D. А. Voronovich [et al.] // Functional Materials. — 2008. — Vol. 15, № 1. — P. 63. http://dspace.nbuv.gov.ua/handle/123456789/137229.
3. Berger, M. H. Local investigation of the emissive properties of LaB6-ZrB2 eutectics / M. H. Berger, T. C. Back, P. Soukiassian [et al.] // Journal of Materials Science. — 2017. — Vol. 52, № 10. — P. 5537-5543. https://link.springer.com/article/10.1007/s10853-017-0816-0.
4. Storms, E. K. Thermionic emission and vaporization behavior of the ternary systems of lanthanum hexaboride containing molybdenum boride, molybdenum diboride, zirconium diboride, gadolinium hexaboride, and neodymium hexaboride / E. K. Storms // J. Appl. Phys. — 1983. — Vol. 54, №. 2. — P. 1076-1081. https://aip.scitation.org/doi/abs/10.1063/1.332114.
5. Back T. C. Work function characterization of directionally solidified LaB6-VB2 eutectic / T. C. Back, A. K. Schmid, S. B. Fairchild [et al.] // Ultramicroscopy. — 2017. — Vol. 183. — P. 67-71. https://www.sciencedirect.com/science/artide/pii/S0304399116304156.
6. Yang, X. Microstructure, mechanical and thermionic emission properties of a directionally solidified LaB6-VB2 eutectic composite / X. Yang, P. Wang, Z. Wang [et al.] // Mater. Des. — 2017. — Vol. 133. — P. 299-306. https://www.sciencedirect.com/science/article/pii/S0264127517307463.
7. Hasan M. M. Low temperature synthesis of low thermionic work function (LaxBa1-x)B6 / M. M. Hasan, D. Cuskelly, H. Sugo [et al.] // J. Alloys Compd. — 2015. — Vol. 636. — P. 67-72. https://www.sciencedirect.com/science/article/pii/S0925838815005344.
8. Voronovich, D. А. Thermionic properties of lutetium borides single crystals / D. А. Voronovich, A. A. Taran, N. Y. Shitsevalova [et al.] // Functional Materials. — 2014. — Vol. 3. — P. 266-273. http://dspace.nbuv.gov.ua/handle/123456789/120444.
9. Deng, H. Crystallographic characterization and indentation mechanical properties of LaB6-ZrB2 directionally solidified eutectics / H. Deng, E. C. Dickey, Y. Paderno [et al.] // Journal of Materials Science. — 2004. — Vol. 39, № 19. — P. 5987-5994. https://link.springer.com/article/10.1023/BJMSC.0000041695.40772.56.
10. Bogomol, I. High-temperature strength of directionally reinforced LaB6-TiB2 composite / I. Bogomol, T. Nishimura, O. Vasylkiv [et al.] // J. Alloys Compd. — 2010. — Vol. 505, №. 1. — P. 130-134. https://www.sciencedirect.com/science/article/pii/S0925838810011199.
11. Volkova, H. The influence of Ti addition on fracture toughness and failure of directionally solidified LaB6-ZrB2 eutectic composite with monocrystalline matrix / H. Volkova, V. Filipov, Y. Podrezov // J. Eur. Ceram. Soc. — 2014. — Vol. 34, № 14. — P. 3399-3405. https://www.sciencedirect.com/science/article/pii/S0955221914001678.
12. Bogomol, I. The bending strength temperature dependence of the directionally solidified eutectic LaB6-ZrB2 composite / I. Bogomol, T. Nishimura, Y. Nesterenko [et al.] // Journal of Alloys and Compounds. — 2011. — Vol. 509, № 20. — P. 6123-6129. https://www.sciencedirect.com/science/article/pii/S0925838811006335.
13. Paderno, Y. B. A new class of «in-situ» fiber reinforced boride composite ceramic materials / Y. B. Paderno // Advanced Multilayered and Fibre-Reinforced Composites. — Springer Netherlands, 1998. — P. 353-369. https://link.springer.com/chapter/10.1007/978-94-007-0868-6_23.
14. Min, G. H. Mechanical properties of LaB6-ZrB2 composites / G. H. Min, R. Gao, H. S. Yu // Key Engineering Materials. — Trans Tech Publications. — 2005. — Vol. 297. — P. 1630-1638. https://www.scientific.net/KEM.297-300.1630.
15. Xiao, L. Origins of high visible light transparency and solar heat-shielding performance in LaB6 / L. Xiao, Y. Su, X. Zhou [et al.] // Appl. Phys. Lett. — 2012. — Vol. 101, № 4. — P. 041913. https://aip.scitation.org/doi/abs/10.1063/1.4733386.
16. Yoshio, S. Optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations / S. Yoshio, K. Maki, K. Adachi // J. Chem. Phys. — 2016. — Vol. 144, № 23. — P. 234702. https://aip.scitation.org/doi/ abs/10.1063/1.4953849.
17. Mattox, T. M. Moving the plasmon of LaB6 from IR to near-IR via eu-doping / T. Mattox, D. Coffman, I. Roh [et al.] // Materials. — 2018. — Vol. 11, № 2. — P. 226. https://www.mdpi.com/1996-1944/11/2/226.
18. Qi, X. Experimental and theoretical investigation on tunable optical property of nanocrystalline Ca-doped CeB6 / X. Qi, L. Bao, L. Chao [et al.] // Physica B: Condensed Matter. — 2018. — Vol. 530. — P. 312-316. https://www.sciencedirect.com/science/article/pii/S0921452617309882.
19. Sani, E. Lanthanum hexaboride for solar energy applications / E. Sani, L. Mercatelli, M. Meucci [et al.] // Scientific Reports. — 2017. — Vol. 7, № 1. — P. 718. https://www.nature.com/articles/s41598-017-00749-w.
20. Monteverde, F. Effects of LaB6 addition on arc-jet convectively heated SiC-containing ZrB2-based ultra-high temperature ceramics in high enthalpy supersonic airflows / F. Monteverde, D. Alfano, R. Savino // Corrosion Science. — 2013. — Vol. 75. — С. 443-453. https://www.sciencedirect.com/science/article/pii/S0010938X13002722.
21. Ordan'yan, S. S. Interaction in the LaB6-ZrB2 system / S. S. Ordan'yan, Y. B. Paderno, I. K. Khoroshilova [et al.] // Powder Metall. Metal Ceram. — 1983. — Vol. 22, № 11. — P. 946-948. https://link.springer.com/article/10.1007%2FBF00805556?LI=true.
22. Ordan'yan, S. S. Interaction in the LaB6-HfB2 system / S. S. Ordan'yan, Y. B. Paderno, I. K. Khoroshilova [et al.] // Soviet Powder Metallurgy and Metal Ceramics. — 1984. — Vol. 23, № 2. — P. 157-159. https://link.springer.com/article/10.1007/BF00792275.
23. Ordan'yan, S. S. Interaction in the LaB6-CrB2 system / S. S. Ordan'yan, Y. B. Paderno, E. E. Nikolaeva [et al.] // Powder Metall. Metal Ceram. — 1984. — Vol. 23, № 5. — С. 387-389. https://link.springer.com/article/10.1007%2FBF00796605?LI=true.
24. Ordan'yan, S. S. Interaction in the GdB6-TiB2 system / S. S. Ordan'yan, E. E. Nikolaeva // Powder Metall. Metal Ceram. — 1987. — Vol. 26, № 1. — P. 51-53. https://link.springer.com/article/10.1007%2FBF00794265?LI=true.
25. Орданьян, С. С. Взаимодействие в системах GdB6-MVB2 / С. С. Орданьян, И. К. Хорошилова, Е. Е. Николаева // Неорганические материалы. — 1990. — Т. 26, № 8. — С. 1635-1637.
26. Loboda P. I. Phase relations in the LaB6-MoB2 system / P. I. Loboda, G. P. Kisla, I. I. Bogomol [et al.] // Inorg. Mater. — 2009. — Vol. 45, № 3. — P. 246-249. https://link.springer.com/article/10.1134/S0020168509030042.
27. Kysla, G. Ceramic materials of the quasi-binary LaB6-MoB2 system / G. Kysla, P. Loboda // Processing and Application of Ceramics. — 2007. — Vol. 1, № 1/2. — P. 19-22. http://www.tf.uns.ac.rs/publikacije/PAC/pdf/04%20PAC%2001.pdf.
28. Kysla, G. P. Structure of the eutectic in the LaB6-ScB2 system / G. P. Kysla, P. I. Loboda, L. Geshmati // Powder Metall. Metal Ceram. — 2014. — Vol. 53, № 7/8. — P. 479-484. https://link.springer.com/article/10.1007/s11106-014-9640-0.
29. Лобода, П. I. Евтектичш сплави систем LaB6-Me2B5 / П. I. Лобода, Г. П. Кисла, М. О. Сисоев [и др.] // Металознавство та обробка металiв. — 2010. — № 3. — С. 29. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJRN&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/MOM_2010_3_9.pdf.
30. Ordan'yan, S. S. Phase relations in the LaBe-W2B5 system / S. S. Ordan'yan, D. D. Nesmelov, S. V. Vikhman // Inorg. Mater. — 2009. — Vol. 45, № 7. — P. 754-757. https://link.springer.com/artide/10.1134/S0020168509070097.
31. Gao, R. Fabrication and oxidation behavior of LaB6-ZrB2 composites / R. Gao, G. Min, H. Yu [et al.] // Ceram. Int. — 2005. — Vol. 31, № 1. — P. 15-19. https://www.sciencedirect.com/science/article/pii/S0272884204002895.
32. Chen, C. M. Microstructure, mechanical performance and oxidation mechanism of boride in situ composites / C. M. Chen, L. T. Zhang, W. C. Zhou [et al.] // Comp. Sci. Technol. — 2001. — Vol. 61, № 7. — P. 971-975. https://www.sciencedirect.com/science/article/pii/S0266353800001871.
33. Wang, X. Spark plasma sintering of LaB6-(Ti,Zr)B2 composites / X. Wang, J. X. Zhang, X. Y. Yang [et al.] // Advances in Applied Ceramics. — 2017. — Vol. 116, № 3. — P. 132-137. https://www.tandfonline.com/doi/abs/10.1080/17436753.2016.1264139.
34. Yang, X. Spark plasma sintering of SiC-LaB6 composite / X. Yang, X. Wang, P. Wang [et al.] // J. Alloys Compd. — 2017. — Vol. 704. — P. 329-335. https://www.sciencedirect.com/science/article/pii/S0925838817304498.
35. Ordanyan, S. S. Nonoxide high-melting point compounds as materials for extreme conditions / S. S. Ordanyan, S. V. Vikhman, D. D. Nesmelov [et al.] // Advances in Science and Technology. — 2014. — Vol. 89. — P. 47-56. https://www.scientific.net/AST.89.47.
36. Орданьян, С. С. Рост зерен при свободном спекании керамик на основе тугоплавких боридов LaB6, TiB2 и W2B5 / С. С. Орданьян, Д. Д. Несмелов // Огнеупоры и техническая керамика. — 2014. — № 3. — С. 24-31. https://www.researchgate.net/profile/Dmitriy_Nesmelov/publication/323686165_Rost_zeren_pri_svobodnom_spekanii_keramik_na_osnove_tugoplavkih_boridov_LaB6_TiB2_i_W2B5/links/5aa441e3aca272d448b8ebb4/Rost-zeren-pri-svobodnom-spekanii-keramik-na-osnove-tugoplavkih-boridov-LaB6-TiB2-i-W2B5.pdf.
37. Chen, C. M. Characterization of LaB6-ZrB2 eutectic composite grown by the floating zone method / C. M. Chen, L. T. Zhang, W. C. Zhou // J. Crys. Growth. — 1998. — Vol. 191, № 4. — P. 873-878. https://www.sciencedirect.com/science/article/pii/S0022024898003583.
38. Chen, W. T. Directionally solidified boride and carbide eutectic ceramics / W. T. Chen, R. M. White, T. Goto [et al.] // J. Am. Ceram. Soc. — 2016. — Vol. 99, № 6. — P. 1837-1851. https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/jace.14287.
39. Paderno, Y. B. Directionally crystallized ceramicfiber-reinforced boride composites / Y. B. Paderno, V. N. Paderno, V. B. Filippov // Refract. Ind. Ceram. — 2000. — Vol. 41, № 11. — P. 373-378. https://link.springer.com/article/10.1023%2FA%3A1011334230820?LI=true.
40. Bogomol, I. Directionally solidified ceramic eutectics for high-temperature applications / I. Bogomol, P. Loboda // MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments. — 2013. — P. 303. https://www.igi-global.com/chapter/directionally-solidified-ceramic-eutectics-for-high-temperature-applications/80036.
41. Deng, H. Interface crystallography and structure in LaB6-ZrB2 directionally solidified eutectics / H. Deng, E. C. Dickey, Y. Paderno // J. Am. Ceram. Soc. — 2007. — Vol. 90, № 8. — P. 2603-2609. https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1551-2916.2007.01812.x.
42. Орданьян, С. С. Физико-химический базис создания новой керамики с участием боросодержащих тугоплавких соединений и практика его реализации / С. С. Орданьян, В. И. Румянцев, Д. Д. Несмелов [и др.] // Новые огнеупоры. — 2012. — № 3. — С. 153-156. [Ordan'yan, S. S. Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementation / S. S. Ordan'yan, V. I. Rumyantsev, D. D. Nesmelov [et al.] // Refract. Ind. Ceram. — 2012. — Vol. 53, № 2. — P. 108-111. https://link.springer.com/article/10.1007/s11148-012-9473-7.]
43. Thangadurai, P. Phase stabilization and structural studies of nanocrystalline La2O3-ZrO2 / P. Thangadurai, A. C. Bose, S. Ramasamy // Journal of Materials Science. — 2005. — Vol. 40, № 15. — С. 3963-3968. https://link.springer.com/article/10.1007/s10853-005-2831-9.
44. Gonell, F. One step microwave-assisted synthesis of nanocrystalline WOx-ZrO2 acid catalysts / F. Gonell, D. Portehault, B. Julian-Lopez [et al.] // Catalysis Science & Technology. — 2016. — Vol. 6, №. 23. — P. 8257-8267. https://pubs.rsc.org/en/content/articlelanding/2016/cy/c6cy01082b/unauth#!divAbstract.
45. Aghaeenejad, N. Fabrication and nano structural study on La2O3-Co3O4-ZrO2 composite / N. Aghaeenejad, A. Bahari, M. Riazian [et al.] // International Journal of Nano Dimension. — 2015. — Vol. 6. — P. 39-44. https://web.a.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=20088868&AN=96018643&h=vuYdBscXlIfA5G0ODlXKTTXpQQGTuxG0Spsg9IYiBQD0KRcq%2bLSErhT%2bVa5yfxty9cnOCV1mITC358T6C0R6DA%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d20088868%26AN%3d96018643.
Supplementary files
For citation: Nesmelov D.D., Kozhevnikov O.A., Vikhman S.V., Novoselov E.S., Shatalkina I.V. Synthesis of LaBe-ZrBz powder mixture by borothermal reduction of La(OHh and ZrO(OH)2 co-precipitated in a boron suspension. NOVYE OGNEUPORY (NEW REFRACTORIES). 2019;(8):38-43. https://doi.org/10.17073/1683-4518-2019-8-38-43
Refbacks
- There are currently no refbacks.