Experimental and numerical study of the formation of thermophysical characteristics of carbon composite materials. Part 2. Numerical analysis of the performance of a refractory carbon composite material


https://doi.org/10.17073/1683-4518-2019-8-13-22

Full Text:




Abstract

The warming carbon, refractory parts, and thermal properties of the material temperature from 300 to 2500 K were investigated. The discrete heterogeneous surface about many warmup mechanism of reinforced carbon-carbon composite material (CCCM) with a fast heating of details was identified. A numerical analysis of the stress state of the part, which is considered as a consequence of the constraint of deformation of the heated parts of the part by relatively cold fragments, was carried out taking into account tests of carbon materials in the range from 300 to 3000 K. Safety factor levels in various parts of the part are found. It is shown that an additional increase in heat resistance as one of the component characteristics of the complex concept of refractoriness of a part from CCCM is associated with high thermal conductivity of 1D-reinforced structure rods. Ill. 7. Ref. 26.


About the Authors

S. A. Kolesnikov
НИИграфит, АО
Russian Federation


L. V. Kim
НИИграфит, АО
Russian Federation


V. R. Dudin
НИИграфит, АО
Russian Federation


References

1. Ohlhorst, Craig W. Thermal conductivity database of various structuralcarbon-carbon compositematerials / Craig W. Ohlhorst, Wallace L. Vauhn, Philip O. Ransone, Hwa-Tsu Tsou. — Langley Research Center. Hampton, Virginia, 1997. — 96 p. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.82.682&rep=rep1&type =pdf.

2. Pradere, Ch. Termal and thermomechanical characterization of carbon and ceramic fibers at very high temperature / Ch. Pradere. — Ecole Natiionale Superiered'Arts et Metiers Centre de Bordeaux, 2004. — 296 p. https://pastel.archives-ouvertes.fr/file/index/docid/500111/filename/ThesePradere.pdf.

3. Li, Wei-Jie. Thermochemical ablation of carbon/ carbon composites with non-linear thermal conductivity / Wei-Jie Li, Hai-Ming Huang, Yu-Meng Hu // Thermal Science. — 2014. — Vol. 18, № 5. — Р. 1625-1629. http://www.doiserbia.nb.rs/img/doi/0354-9836/2014/0354-98361405625L.pdf.

4. Lachaud, J. 3D modeling of thermochemical ablation in carbon-based materials: effect of ani-sotropy on surface roughness onest / J. Lachaud, Y. Aspa, G. L. Vignoles, J.-M Goyheneche. http://jeanlachaud.com/research/lachaud-ISMSE2006.pdf.

5. Grujicic, M. Computational analysis of the thermal conductivity of the carbon-carbon composite materials / M. Grujicic, C. L. Zhao, E. C. Dusel [et al.] // J. Mater. Sci. — 2006. — Vol. 41, № 24. — Р. 8244-8256. https://link.springer.com/article/10.1007/s10853-006-1003-x.

6. Пат. 2498962 Российская Федерация. Армирующий каркас углерод-углеродного композиционного материала / Кречка Г. А., Савельев В. Н., Клейменов В. Д. — № 2011127880/02 ; заявл. 06.07.11 ; опубл. 20.11.13, Бюл. № 32. http://www.findpatent.ru/patent/249/2498962.html.

7. Дементьев, О. Н. Оценка влияния механически уносимых частиц тепловой защиты гиперзвуковых летательных аппаратов на устойчивость течения в пограничном слое и теплообмен / О. Н. Дементьев, Г. Ф. Костин, Н. Н. Тихонов, Б. М. Тюлькин // Вестник Челябинского государственного университета. — 2012. — № 14 (268). Физика. Вып. 13. — С. 9-13. https://cyberleninka.ru/article/n/otsenka-vliyaniya-mehanicheski-unosimyh-chastits-teplovoy-zaschity-giperzvukovyh-letatelnyh-apparatov-na-ustoychivost-techeniya-v.

8. Иженбин, И. А. Томографическая система на базе томографа «Орел» для осуществления томографического сканирования образцов из УУКМ материалов типа 39п7.001 и 4КМС-Л / И. А. Иженбин // Электронный научный архив Томского политехнического университета. — 2016. http://earchive.tpu.ru/bitstream/11683/28151/1/TPU174557.pdf.

9. Shi, Hong-bin. Effect of graphitization parameters on the residual stress in 4D carbon fiber / carbon composites / Hong-Bin Shi, Min Tang, Bo Gao, Jun-Ming Su // New Carbon Materials. — 2011. — Vol. 26, № 4. — Р. 287, 288. DOI: 10. 1016/ S1872-5805(11)60082-6. https://www.sciencedirect.com/journal/new-carbon-materials/vol/26/issue/4.

10. Колесников, С. А. Формирование уровня теплопроводности углерод-углеродного композиционного материала / С. А. Колесников, М. Ю. Бамборин, В. А. Воронцов [и др.] // Новые огнеупоры. — 2017. — № 2. — С. 30-38. [Kolesnikov, S. A. Formation of carbon-carbon composite material thermal conductivity standards / S. A. Kolesnikov, M. Yu. Bamborin, V. A. Vorontsov [et al.] // Refract. Ind. Ceram. — 2017. — Vol. 58, № 1. — P. 94-102.]

11. Колесников, С. А. Исследование формирования теплофизических характеристик объемноармированных углерод-углеродных композиционных материалов / С. А. Колесников, Л. В. Ким, В. А. Воронцов [и др.] // Новые огнеупоры. — 2017. — № 8. — С. 45-56. [Kolesnikov, S. A. Study of thermophysical property formation of spatially reinforced carbon-carbon composite material / S. A. Kolesnikov, L. V. Kim, V. A. Vorontsov // Refract. Ind. Ceram. — 2017. — Vol. 58, № 4. — P. 439-449.]

12. Организация Объединенных Наций A/AC.105/ C.1/L.312. Принципы, касающиеся использования ядерных источников энергии в космическом пространстве. Приняты резолюцией 47/68 Генеральной Ассамблеи от 14 декабря 1992 г. http://www.un.org/ru/documents/decl_conv/conventions/outerspace_nucpower.shtml.

13. Проценко, А. К. Разработка углерод-углеродных технологий и перспективы их развития. В сб. Научноисследовательскому институту конструкционных материалов на основе графита — 55 лет / А. К. Проценко, С. А. Колесников. — М. : Научные технологии, 2015. — 246 с. http://www.niigrafit.ru/nauka-i-obrazovanie/sbornik.pdf.

14. Хартов, В. В. Проектная концепция десантного модуля «Экзомарс-2018», создаваемого НПО им. С. А. Лавочкина / В. В. Хартов, М. Б. Мартынов, А. В. Лу-кьянчиков, С. Н. Алексашкин // Вестник НПО им. С. А. Лавочкина. — 2014. — № 2 (23). — С. 5-12.

15. Полежаев, Ю. В. Тепловая защита / Ю. В. Полежаев, Ф. Б. Юрьевич ; под ред. А. В. Лыкова. — М. : Энергия, 1976. — 392 с.

16. Тепловой блок изделия РИТ «Ангел». https://helpiks.org/6-77726.html.

17. Upadhyay, R. Steady-state ablation model coupling with hypersonic flow / R. Upadhyay, P. T. Bauman, R. Stogner [et al.] // 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4-7 January 2010, Orlando, Florida. — Р. 1-10. https://arc.aiaa.org/doi/10.2514/6.2010-1176.

18. Многомерно-армированные углерод-углеродные композиционные материалы. http://niigrafit.ru/produktsiya/kompozity.php.

19. Manocha, L. M. High performance carbon-carbon composites / L. M. Manocha // Sadhana. — 2003. — Vol. 28, Parts 1/2.—Р. 349-358. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.582.8031&rep=rep1&type=pdf.

20. Салич, В. Л. Проектирование камеры кислородноводородного ракетного двигателя тягой 100 Н на основе численного моделирования внутрикамерных процессов / В. Л. Салич // Вестник УГАТУ. — 2014. — Т. 18, № 4 (65). — С. 20-26. http://journal.ugatu.ac.ru.

21. Соседов, В. П. Свойства конструкционных материалов на основе графита ; справочник / В. П. Соседов, B. Г. Нагорный, А. С. Котосонов [и др.]. — М. : Металлургия, 1975. — 336 с.

22. ГОСТ 9.910-88. Метод испытания на термоусталость в газовых потоках на клиновидных образцах. http://echemistry.ru/assets/files/literatura/gost/gost-9.910-88-edinaya-sistema-zashhity-ot-korrozii-i-stareniya.-metally-splavy-pokrytiya-zharostojkie.-metod-ispytaniya-na-termoustalost-v-gazovyh-potokah-na-klinovidnyh-obrazcah.pdf.

23. Тимошенко, С. П. Теория упругости ; 2-е изд. / C. П. Тимошенко, Дж. Гудьер ; пер. с англ. под ред. Г. С. Шапиро. — М. : Наука. Главная редакция физикоматематической литературы, 1979. — 560 с.

24. Карпов, А. П. Высокотемпературные механические свойства углеродных и композиционных углерод-углеродных материалов / А. П. Карпов, Г. Е. Мостовой // Перспективные материалы. — 2015. — № 3. — С. 13-21.

25. Аксельрод, Л. М. Математическое моделирование разрушения футеровок металлургического оборудования под действием термоударов / Л. М. Аксельрод, А. В. Заболотский // Сборник научных идей. Современная наука. — 2010. — № 2 (4). — С. 165-169. http://modern.science.triacon.org/ru/issues/2010/files/papers/2/165-169.pdf.

26. Колесников, С. А. Высокотемпературная обработка углерод-углеродных композиционных материалов. Сообщение 2. Термическая стабилизация геометрии деталей из углерод-углеродных композиционных материалов двумерного армирования / С. А. Колесников, Г. Е. Мостовой, С. В. Васильченко // Новые огнеупоры. — 2012. — № 6. — С. 32-40. [Kolesnikov, S. A. High-temperature treatment of carbon-carbon composite materials. Communication 2. Thermal stabilization of two-dimensionally reinforced carbon-carbon composite material object geometry / S. A. Kolesnikov, G. E. Mostovoi, S. V. Vasil'chenko [et al.] // Refract. Ind. Ceram. — 2012. — Vol. 53, № 3. — P. 185-192.]


Supplementary files

For citation: Kolesnikov S.A., Kim L.V., Dudin V.R. Experimental and numerical study of the formation of thermophysical characteristics of carbon composite materials. Part 2. Numerical analysis of the performance of a refractory carbon composite material. NOVYE OGNEUPORY (NEW REFRACTORIES). 2019;(8):13-22. https://doi.org/10.17073/1683-4518-2019-8-13-22

Views: 347

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)