Получение мультиканальной керамики на основе Ti3SiC2


https://doi.org/10.17073/1683-4518-2019-5-104-108

Полный текст:




Аннотация

Для получения мультиканальной керамики на основе Ti3SiC2 предложено использовать реакционные композиции, составленные из регулярно уложенных титановых стержней и карбидкремниевой керамической массы, заполняющей пространство между титановыми стержнями. Изучен физико-химический механизм формирования мультиканальной структуры получаемого керамического материала. Ключевой стадией процесса является реакция при 1360‒1370 °С, в результате которой происходят интенсивное плавление титановых компонентов и последующая инфильтрация карбидкремниевой керамической массы образующимся расплавом. На месте исходных титановых элементов образуются полые каналы.

Об авторах

П. В. Истомин
ФГБУН «Институт химии Коми НЦ УрО РАН»
Россия

Кандидат химических наук.

Сыктывкар



Е. И. Истомина
ФГБУН «Институт химии Коми НЦ УрО РАН»
Россия

Кандидат химических наук.

Сыктывкар



А. В. Надуткин
ФГБУН «Институт химии Коми НЦ УрО РАН»
Россия

Кандидат технических наук.

Сыктывкар



В. Э. Грасс
ФГБУН «Институт химии Коми НЦ УрО РАН»
Россия

Кандидат геолого-минералогических наук.

Сыктывкар



Список литературы

1. Barsoum, M. W. Synthesis and characterization of a remarkable ceramic: Ti3SiC2 / M. W. Barsoum, T. ElRaghy // J. Am. Ceram. Soc. ― 1996. ― Vol. 79, № 7. ― P. 1953‒1956.

2. Barsoum, M. W. The Mn+1AXn phases: a new class of solids ; thermodynamically stable nanolaminates / M. W Barsoum // Prog. Solid St. Chem. ― 2000. ― Vol. 28. ― P. 201‒281.

3. Zhang, H. B. Current status in layered ternary carbide Ti3SiC2 : a review / H. B. Zhang, Y. W. Bao, Y. C. Zhou // J. Mater. Sci. Technol. ― 2009. ― Vol. 25, № 1. ― P. 1‒38.

4. Sun, Z. M. Progress in research and development on MAX phases: a family of layered ternary compounds / Z. M. Sun // Int. Mater. Rev. ― 2011. ― Vol. 56, № 3. ― P. 143‒166.

5. Kee, R. J. The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger / R. J. Kee, B. B. Almand, J. M. Blasi [et al.] // Appl. Therm. Eng. ― 2011. ― Vol. 31, № 11/12. ― P. 2004‒2012.

6. Takeda, T. Feasibility study on the applicability of a diffusion-welded compact intermediate heat exchanger to next-generation high temperature gas-cooled reactor / T. Takeda, K. Kunitomi, T. Horie, K. Iwata // Nucl. Eng. Des. ― 1997. ― Vol. 168, № 1‒3. ― P. 11‒21.

7. Min, J. K. High temperature heat exchanger studies for applications to gas turbines / J. K. Min, J. H. Jeong, M. Y. Ha, K. S. Kim // Heat Mass. Transfer. ― 2009. ― Vol. 46, № 2. ― P. 175‒186.

8. Aquaro, D. High temperature heat exchangers for power plants: Performance of advanced metallic recuperators / D. Aquaro, M. Pieve // Appl. Therm. Eng. ― 2007. ― Vol. 27, № 2/3. ― P. 389–400.

9. Lee, S. Investigation of flow boiling in large microchannel heat exchangers in a refrigeration loop for space applications / S. Lee, I. Mudawar // Int. J. Heat Mass Trans. ― 2016. ― Vol. 97. ― P. 110‒129.

10. Besarati, S. M. Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles / S. M. Besarati, D. Yogi Goswami, E. K. Stefanakos // J. Sol. Energy Eng. ― 2015. ― Vol. 137, № 3. ― P. 1‒8.

11. Li, Q. Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers / Q. Li, G. Flamant, X. Yuan, P. Neveu, L. Luo // Renew. Sustain. Energy Rev. ― 2011. ― Vol. 15, № 9. ― P. 4855‒4875.

12. Zhong, Z. Removal of organic aerosols from furnace flue gas by ceramic filters / Z. Zhong, W. Xing, X. Li, F. Zhang // Ind. Eng. Chem. Res. ― 2013. ― Vol. 52, № 15. ― P. 5455‒5461.

13. Dou, B. Research progress of hot gas filtration, desulphurization and HCl removal in coal-derived fuel gas: a review / B. Dou, C. Wang, H. Chen [et al.] // Chem. Eng. Res. Des. ― 2012. ― Vol. 90, № 11. ― P. 1901‒1917.

14. Taslicukur, Z. Production of ceramic foam filters for molten metal filtration using expanded polystyrene / Z. Taslicukur, C. Balaban, N. Kuskonmaz // J. Eur. Ceram. Soc. ― 2006. ― Vol. 27, № 2/3. ― P. 637‒640.

15. Fang, X. A cost-efficient fabrication strategy for conductive Ti2AlC honeycomb monolith using elemental powders / X. Fang, X. Wang, H. Zhang [et al.] // Adv. Eng. Mater. ― 2015. ― Vol. 17, № 9. ― P. 1344‒1350.

16. Fend, T. Experimental investigation of compact silicon carbide heat exchangers for high temperatures / T. Fend, W. Volker, R. Miebach [et al.] // Int. J. Heat Mass Trans. ― 2011. ― Vol. 54, № 19/20. ― P. 4175‒4181.

17. Bower, C. Heat transfer in water-cooled silicon carbide milli-channel heat sinks for high power electronic applications / C. Bower, A. Ortega, P. Skandakumaran [et al.] // J. Heat Trans. ― 2005. ― Vol. 127, № 1. ― P. 59‒65.

18. Nika, P. An integrated pulse tube refrigeration device with micro exchangers: design and experiments / P. Nika, Y. Bailly, J. C. Jeannot, M. De Labachelerie // Int. J. Therm. Sci. ― 2003. ― Vol. 42, № 11. ― P. 1029‒1045.

19. Cai, K. Geometrically complex silicon carbide structures fabricated by robocasting / K. Cai, B. RomanManso, J. E. Smay [et al.] // J. Am. Ceram. Soc. ― 2012. ― Vol. 95, № 8. ― P. 2660‒2666.

20. Alm, B. Testing and simulation of ceramic micro heat exchangers / B. Alm, U. Imke, R. Knitter [et al.] // Chem. Eng. J. ― 2008. ― Vol. 135S. ― P. S179‒S184.

21. Liu, H.-C. Rapid prototyping methods of silicon carbide micro heat exchangers / H.-C. Liu, H. Tsuru, A. G. Cooper, F. B. Prinz // Proc. Inst. Mech. Eng., Part B: J. Eng. Manufact. ― 2005. ― Vol. 219. ― P. 525‒538.

22. Istomin, P. V. Fabrication of Ti3SiC2-based ceramic matrix composites by a powder-free SHS technique / P. V. Istomin, A. V. Nadutkin, V. E. Grass // Ceram. Int. ― 2013. ― Vol. 39. ― P. 3663‒3667.

23. Istomin, P. V. Effect of heating schedule on fabrication of Ti3SiC2-based composites from Ti‒SiC powder mixture / P. V. Istomin, A. V. Nadutkin, V. E. Grass // Int. J. Appl. Ceram. Technol. ― 2012. ― Vol. 9. ― P. 991‒997.


Дополнительные файлы

Для цитирования: Истомин П.В., Истомина Е.И., Надуткин А.В., Грасс В.Э. Получение мультиканальной керамики на основе Ti3SiC2. Новые огнеупоры. 2019;1(5):104-108. https://doi.org/10.17073/1683-4518-2019-5-104-108

For citation: Istomin P.V., Istomina E.I., Nadutkin A.V., Grass V.E. Obtaining multichannel ceramics based on Ti3SiC2. NOVYE OGNEUPORY (NEW REFRACTORIES). 2019;1(5):104-108. (In Russ.) https://doi.org/10.17073/1683-4518-2019-5-104-108

Просмотров: 262

Обратные ссылки

  • Обратные ссылки не определены.


ISSN 1683-4518 (Print)