Hercynite spinel effectson the technological featuresof MCZ composite brick used for RCK lining
https://doi.org/10.17073/1683-4518-2019-4-29-37
Abstract
Magnesia-calcium zirconate (MCZ) composite brickswere recently used in the transition zones of cement kilnsbecause they are environment-friendly and hard-wearing towards cement clinker phases at high temperatures. Modifiers such as hercynite spinel (FA: FeO·Al2O3) can be added in small amounts to enhance elasticity, coatability, and load bearing of the brick structure. In the current study, different amounts (2, 4 and 6 wt. %) of hercynite spinelwere added to the MCZ composite clinkermade from Egyptian magnesite and zirconia (9,8 wt. %)then densification parameters, cold compressive strength (CCS), attacking by cement clinker components (CCC), and other technical characteristics of the formedbricks were explored. The maximum strength was gotten by 2,00 wt. % FA spinel addition,where excessive micro-cracks and glassy phase were the limiting factors for further added spinel. The penetration depth of the cement clinker components into MCZ‒FA bricks was downsized as FA spinel was added and further reduction occurred as FA increased. Furthermore, the coating character and the thermal shock cycles of the bricks were greatly improved as FA spinelraised to 6,00 wt. %. Those bricks with different FA spinel ratios can be put forward for lining different zones in the rotary cement kiln where different affinities for coating formations occur. Ill. 8. Ref. 31. Tab. 3.
About the Authors
Emad M. M. EwaisEgypt
Ibrahim M. I. Bayoumi
Egypt
References
1. Refractory bricks Suppliers, Manufacturers (n.d.). http://www.weiku.com/suppliers/refractory-bricks.html (accessed July 13, 2018).
2. Bhatty, J. I. Innovations in Portland cement manufacturing / J. I. Bhatty. ― PCA, Skokie, 2011.
3. Wang, D. Optimizing performance of magnesia-spinel brick used at cement rotary kiln / D. Wang, Y. Li, Y. Li, R. Li, Y. Li // Adv. Mater. Res. ― 2011. ― Vol. 250‒253. ― P. 588‒594.
4. Schacht, C. A. Refractories handbook / C. A. Schacht. ― CRC Press, Estados Unidos, 2004.
5. Contreras, J. Microstructure and properties of hercynite-magnesia-calcium zirconate refractory mixtures / J. Contreras, G. Castillo, E. Rodríguez, T. Das, A. Guzmán // Mater. Charact. ― 2005. ― Vol. 54.
6. Otroj, S. Synthesis of hercynite under air atmosphere using MgAl2O4 spinel / S. Otroj // Mater. Sci. ― 2015. ― Vol. 21.
7. Buchebner, G. Magnesia-hercynite bricks, an innovative burnt basic refractory ; in Proceedings of the Unified Int. Tech. Conf. on Refractories / G. Buchebner, T. Molinaria, H. Harmuth // UNITECR. ― 1999. ― Vol. 99. ― P. 201‒311.
8. Chung, K. C. Fabrication of magnetic iron-hercynite composites by reaction sintering / K. C. Chung, D. H. L. Ng // Key Eng. Mater. ― 2007. ― Vol. 334/335. ― P. 309‒312.
9. Liu, G. Composition and microstructure of a periclase– composite spinel brick used in the burning zone of a cement rotary kiln / G. Liu, N. Li, W. Yan [et al.] // Ceram. Int. ― 2014. ― Vol. 40. ― P. 8149‒8155.
10. Gelbmann, G. Hybrid spinel technology provides performance advances for basic cement rotary kiln bricks / G. Gelbmann, R. Krischanitz, S. Jorg // RHI Bulletin. ― 2013. ― Vol. 2. ― P. 10‒12.
11. Yin, G. X. High performance iron-rich Magnesia-Spinel composite for burning zone of cement rotary kiln / G. X. Yin, Y. Li, J. H. Chen, B. Pan // Adv. Mater. Res. ― 2012. ― Vol. 476‒478. ― P. 1915‒1919.
12. Szczerba, J. Calcium Zirconate as the secondary phase of magnesia refractories for cement rotary kiln / J. Szczerba // Adv. Sci. Technol. ― 2010. ― Vol. 70. ― P. 15‒20.
13. Botta, P. M. Mechanochemical synthesis of hercynite / P. M. Botta, E. F. Aglietti, J. M. P. López // Mater. Chem. Phys. ― 2002. ― Vol. 76. ― P. 104‒109.
14. Liu, G. Composition and structure of a composite spinel made from magnesia and hercynite / G. Liu, N. Li, W. Yan [et al.] // J. Ceram. Proc. Res. ― 2012. ― Vol. 13. ― Р. 480‒485.
15. Lavina, B. Controlled time-temperature oxidation reaction in a synthetic Mg-hercynite / B. Lavina, F. Princivalle, A. Della // Phys. Chem. Miner. ― 2005. ― Vol. 32, № 2. ― Р. 83‒88.
16. Álvaro Obregón, A. MgO‒CaZrO3-based refractories for cement kilns / A. Álvaro Obregón, J. L. Rodríguez-Galicia [et al.] // J. Eur. Ceram. Soc. ― 2011. ― Vol. 31. ― P. 61‒74.
17. Serena, S. Thermodynamic assessment of the system ZrO2‒CaO‒MgO using new experimental results Calculation of the isoplethal section MgO‒CaO‒ZrO2 / S. Serena, M. Sainz, S. Deaza, A. Caballero // J. Eur. Ceram. Soc. ― 2005. ― Vol. 25. ― P. 681‒693.
18. Ross, N. Compressibility of CaZrO3 perovskite: comparison with Ca-oxide perovskites / N. Ross, T. Chaplin // J. Solid State Chem. ― 2003. ― Vol. 172. ― P. 123‒126.
19. Li, L. Synthesis and characterization of high performance CaZrO3-doped X8R BaTiO3-based dielectric ceramics / L. Li, J. Yu, Y. Liu [et al.] // Ceram. Int. ― 2015. ― Vol. 41. ― P. 8696‒8701.
20. Galuskin, E. V. Lakargiite CaZrO3: А new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria, Russia / E. V. Galuskin, V. M. Gazeev, T. Armbruster [et al.] // Am. Mineral. ― 2008. ― Vol. 93. ― P. 1903‒1910.
21. Jaeger, R. E. Thermal shock resistant zirconia nozzles for continuous copper casting / R. E. Jaeger, R. E. Nickell // Ceramics in Severe Environments. ― 1971. ― P. 163‒184.
22. Kozuka, H. Further improvements of MgO‒CaO‒ ZrO2 refractory bricks / H. Kozuka, Y. Kajita, Y. Tuchiya, T. Honda, S. Ohta // UNITECR, 1995.
23. Contreras, J. Microstructure and properties of hercynite-magnesia-calcium zirconate refractory mixtures / J. Contreras, G. Castillo, E. Rodríguez [et al.] // Mater. Charact. ― 2005. ― Vol. 54. ― P. 354‒359.
24. Rodríguez, E. Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO‒CaZrO3 refractory brick for the cement industry / E. Rodríguez, G.-A. Castillo, J. Contreras [et al.] // Ceram. Int. ― 2012. ― Vol. 38. ― P. 6769‒6775.
25. Rodríguez, E. Effect of hercynite spinel content on the properties of magnesia-calcium zirconate dense refractory composite / E. Rodríguez, A. Limones, J. Contreras [et al.] // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35. ― P. 2631‒2639.
26. Ewais, E. M. M‒CZ composites from Egyptian magnesite as a clinker to RCK refractory lining / E. M. Ewais, I. M. Bayoumi, S. A. El-Korashy // Ceram. Int. ― 2018. ― Vol. 44. ― P. 2274‒2282.
27. Rodríguez, E. C. A. A. MgAl2O4 spinel as an effective ceramic bonding in a MgO‒CaZrO3 refractory / E. C. A. A. Rodríguez, G.-A. Castillo, T. K. Das [et al.] // J. Eur. Ceram. Soc. ― 2013. ― Vol. 33. ― P. 2767‒2774.
28. Ewais, E. M. Fabrication of MgO‒CaZrO3 refractory composites from Egyptian dolomite as a clinker to rotary cement kiln lining / E. M. Ewais, I. M. Bayoumi // Ceram. Int. ― 2018. ― Vol. 44. ― P. 9236‒9246.
29. Ewais, E. M. Magnesium aluminate spinel nanoparticle influences upon the technological properties of MCZ composite brick for RCK lining / E. M. Ewais, I. M. Bayoumi // Ceram. Int. ― 2018. ― Vol. 44. ― P. 14734‒14741.
30. Lea, F. M. The chemistry of cement and concrete : 3rd ed. / F. M. Lea. ― New York : Chemical Publishing Comp., 1971.
31. Rodríguez-Galicia, J. L. The mechanism of corrosion of MgO/CaZrO3-calcium silicate materials by cement clinker / J. L. Rodríguez-Galicia, A. H. De Aza, J. C. Rendón-Angeles, P. Pena // J. Eur. Ceram. Soc. ― 2007. ― Vol. 27. ― P. 79‒89.
Supplementary files
For citation: Ewais E.M., Bayoumi I.I. Hercynite spinel effectson the technological featuresof MCZ composite brick used for RCK lining. NOVYE OGNEUPORY (NEW REFRACTORIES). 2019;(4):29-37. https://doi.org/10.17073/1683-4518-2019-4-29-37
Refbacks
- There are currently no refbacks.