Mechanism of self-propagating hightemperature synthesis of AlB2‒Al2O3
https://doi.org/10.17073/1683-4518-2019-1-27-36
Abstract
The mechanism of self-propagating high-temperature synthesis (SHS) of AlB2‒Al2O3 composite powders was studied by means of a combustion front quenching method (CFQM). The results showed that combustion reaction started with the melting of B2O3 and Al particles. As the combustion reaction proceeded, the interpenetration of Al and B2O3 in melts happened. The XRD results of the product revealed the reflections of Al2O3, suggesting there had been an exchange of oxygen atoms between Al and B, and evidencing the reaction, B2O3 (l) + 2Al (l) → 2B (s) + Al2O3 (l). Under higher temperature, some of B2O3 volatilized and reacted with B forming gaseous B2O2, which deposited on the surface of Al to precipitate Al2O3 and B. Then B made available dissolved into Al melt, and reacted with the Al in melt to precipitate AlB12 particles. Finally, AlB12 transforms to AlB2 at the peritectic temperature under high cooling rate. Thus, this combustion reaction can be described by the dissolution-precipitation mechanism. In the final products, besides AlB2 and Al2O3 particles, some of Al was also detected. A model corresponding to the dissolutionprecipitation mechanism was proposed, and the ignition temperature of the combustion reaction was determined to be around 800 °C. Ill. 13. Ref. 47.
About the Authors
Pan YangChina
Guoqing Xiao
China
Donghai Ding
China
Yun Ren
China
Zhongwei Zhang
China
Shoulei Yang
China
Wei Zhang
China
References
1. Zhu, T. B. Formation of nanocarbon structures in MgO‒C refractories matrix: Influence of Al and Si additives / T. B. Zhu, Y. W. Li, S. B. Sang, Z. P. Xie // Ceram. Int. ― 2016. ― Vol. 42. ― P. 18833‒18843.
2. Luz, A. P. In situ hot elastic modulus evolution of MgO‒C refractories containing Al, Si or Al‒Mg antioxidants / A. P. Luz, T. M. Souza, C. Pagliosa, M. A. M. Brito, V. C. Pandolfelli // Ceram. Int. ― 2016. ― Vol. 42. ― P. 9836‒9843.
3. Lian, J. W. Effect of in situ synthesized SiC whiskers and mullite phases on the thermo-mechanical properties of Al2O3‒SiC‒C refractories / J. W. Lian, B. Q. Zhu, X. C. Li [et al.] // Ceram. Int. ― 2016. ― Vol. 42. ― P. 16266‒16273.
4. Wu, J. Effect of B4C on the properties and microstructure of Al2O3‒SiC‒C based trough castable refractories / J. Wu, N. J. Bu, H. B. Li, Q. Zhen // Ceram. Int. ― 2017. ― Vol. 43. ― P. 1402‒1409.
5. Guo, W. M. Synthesis of fine ZrB2 powders by solid solution of TaB2 and their densification and mechanical properties / W. M. Guo, D. W. Tan, L. Y. Zeng [et al.] // Ceram. Int. ― 2017.
6. Balcı, Ö. Synthesis of CaB6 powders via mechanochemical reaction of Ca/B2O3 blends / Ö. Balcı, D. Ağaoğulları, İ. Duman, M. Lütfi Öveçoğlu // Powder Technol. ― 2012. ― Vol. 225. ― P. 136‒142.
7. Sunayama, H. Effects of AlB2 addition on the resistance of oxidation of MgO‒C refractories / H. Sunayama, M. Kawahara, T. Mitsuo // The PacRim 2nd Refractories Conference, Caims, Australia, 1996.
8. Chen, J. Effect of Al2O3 addition on properties of nonsintered SiC‒Si3N4 composite refractory materials / J. Chen, K. Chen, Y. G. Liu [et al.] // Int. J. Refract. Met. H. ― 2014. ― Vol. 46. ― P. 6‒11.
9. Muñoz, V. Thermal evolution of Al2O3‒MgO‒C refractories / V. Muñoz, A. G. Tomba Martinez // Pro. Mater. Sci. ― 2012. ― Vol. 1. ― P. 410‒417.
10. Tripathi, H. S. Spinelisation and properties of Al2O3‒ MgAl2O4‒C refractory: Effect of MgO and Al2O3 reactants / H. S. Tripathi, A. Ghosh // Ceram. Int. ― 2010. ― Vol. 36. ― P. 1189‒1192.
11. Zhang, L. The effect of Al particle on AlB2‒Al2O3 composite powders synthesized by self-propagating high temperature synthesis method / L. Zhang, G. Q. Xiao, D. H. Ding [et al.] // J. Synthetic Cryst. China. ― 2016. ― Vol. 45. ― P. 295‒299.
12. Yin, H. Q. The effect of Mg on the phase compositon of AlB2‒Al2O3 composite powders synthesized by combustion synthesis / H. Q. Yin, G. Q. Xiao, D. H. Ding [et al.] // J. Synthetic Cryst. China. ― 2016. ― Vol. 45. ― P. 497‒502.
13. Sirtl, E. Preparation and properties of aluminum diboride single crystals / E. Sirtl, L. M. Woerner // J. Cryst. Growth. ― 1972. ― Vol. 16. ― P. 215‒218.
14. Ağaoğulları, D. Aluminum diboride synthesis from elemental powders by mechanical alloying and annealing / D. Ağaoğulları, H. Gökçe, İ. Duman, M. Lütfi Öveçoğlu // J. Eur. Ceram. Soc. ― 2011. ― Vol. 32. ― P. 1457‒1462.
15. Hall, A. C. Preparing high- and low- aspect ratio AlB2 flakes from borax or boron oxide / A. C. Hall, J. Economy // Aluminum Reduction. ― 2000.
16. Deppisch, C. Processing and mechnical properties of AlB2 flake reinforced Al-alloy composite / C. Deppisch [et al.] // Mater. Sci. Eng. A. ― 1997. ― Vol. 225. ― P. 153‒161.
17. Postrach, S. Pressureless sintering of Al2O3 containing up to 20 vol. % zirconium diboride (ZrB2) / S. Postrach, J. Pötschke // J. Eur. Ceram. Soc. ― 2000. ― Vol. 20. ― P. 1459‒1468.
18. Li, L. Formation of ZrB2 in MgO‒C-composite materials using in-situ synthesis method / L. Li, Y. R. Hong, J. L. Sun, Z. Y. He, X. Y. Peng // J. Iron Steel Res. Int. ― 2006. ― Vol. 13, № 1. ― Р. 70‒74.
19. Merzhanov, G. A new class of combustion processes / G. Merzhanov, I. P. Borovinskaya // Combust. Sci. Technol. ― 1975. ― Vol. 10. ― P. 195‒201.
20. Che, H. Q. Investigation of the mechanism of selfpropagating high-temperature synthesis of TiNi / H. Q. Che, Y. Ma, Q. C. Fan // J. Mater. Sci. ― 2011. ― Vol. 46, № 8. ― Р. 2437‒2444.
21. Fan, Q. C. Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide / Q. C. Fan, H. F. Chai, Z. H. Jin // Intermetallics. ― 2001. ― Vol. 9, № 7. ― Р. 609‒619.
22. Levashova, E. A. Self-propagating high-temperature synthesis of advanced ceramics in the Mo‒Si‒B system: Kinetics and mechanism of combustion and structure formation / E. A. Levashova, Yu. S. Pogozhev, A. Yu. Potanin [et al.] // Ceram. Int. ― 2014. ― Vol. 40. ―P. 6541‒6552.
23. Mukasyan, A. Combustion synthesis in glasses systems under microgravity conditions / A. Mukasyan, A. Pelekh, A. Varma // J. Mater. Syn. Proc. ― 1997. ― Vol. 5, № 5. ― Р. 391‒400.
24. Bertolion, N. Combustion synthesis of Zr‒Si intermetallic compounds / N. Bertolion, U. Anselmi-Tamburini, F. Maglia, G. Spinolo, Z. A. Munir // J. Alloys Compd. ― 1999. ― Vol. 288, № 1/2. ― Р. 238‒248.
25. Xiao, G. Q. Microstructural evolution during the combustion synthesis of TiC‒Al cermet with larger metallic particles / G. Q. Xiao, Q. C. Fan, M. Z. Gu, Z. H. Jin // Mater. Sci. Eng. A. ― 2006. ― Vol. 425, № 1/2. ― Р. 318‒325.
Supplementary files
For citation: Yang P., Xiao G., Ding D., Ren Y., Zhang Z., Yang S., Zhang W. Mechanism of self-propagating hightemperature synthesis of AlB2‒Al2O3. NOVYE OGNEUPORY (NEW REFRACTORIES). 2019;(1):27-36. https://doi.org/10.17073/1683-4518-2019-1-27-36
Refbacks
- There are currently no refbacks.