Physical and mechanical properties of the hotpressed ZrB2‒TaC‒SiC materials
https://doi.org/10.17073/1683-4518-2018-10-16-23
Abstract
The high-density (with the relative density up to 98,8 %) ultrahigh temperature ZrB2‒TaC‒SiC ceramic materials (UHTCs) were prepared by means of the hot Argon pressing 30 MPa at 2000 °C, and isothermal time 15 minutes. After this the phase composition, crystal lattice parameters, ultimate bending stress, Vickers hardness, and the cracking resistance were investigated. The maximum values of the bent stress, hardness, and cracking resistance were 440 MPa, 20 GPa and 5,3 MPa·m1/2 respectively. It was shown that the ZrB2/TaC ration influenced both the crystal lattice spacing and the mechanical properties of the material.Ill. 7. Ref. 50. Tab. 4.
About the Authors
D. D. NesmelovRussian Federation
I. D. Shabalkin
Russian Federation
A. S. Lysenkov
Russian Federation
S. S. Ordanian
Russian Federation
References
1. Fahrenholtz, W. G. Ultra-high temperature ceramics: materials for extreme environments / W. G. Fahrenholtz, G. E. Hilmas // Scripta Mater. ― 2017. ― Vol. 129. ― P. 94‒99.
2. Андриевский, Р. А. Тугоплавкие соединения: новые подходы и результаты / Р. А. Андриевский // Успехи физических наук. ― 2017. ― Т. 187, № 3. ― С. 296‒310. [Andrievski, R. A. High-melting-point compounds: new approaches and new results / R. A. Andrievski // Physics-Uspekhi. ― 2017. ― Vol. 60, № 3. ― P. 276.]
3. Simonenko, E. P. Promising ultra-high-temperature ceramic materials for aerospace applications / E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko [et al.] // Russian Journal of Inorganic Chemistry. ― 2013. ― Vol. 58, № 14. ― P. 1669‒1693.
4. Talmy, I. G. Synthesis, processing and properties of TaC‒TaB2‒C ceramics /I. G. Talmy, J. A. Zaykoski, M. M. Opeka// J. Eur. Ceram. Soc. ― 2010. ― Vol. 30, № 11. ― P. 2253‒2263.
5. Guo, S. Q. Mechanical and physical behavior of spark plasma sintered ZrC‒ZrB2‒SiC composites /S. Q. Guo, Y. Kagawa, T. Nishimura [et al.] // J. Eur. Ceram. Soc. ― 2008. ― Vol. 28, № 6. ― P. 1279‒1285.
6. Shabalin, I. L. Physicomechanical properties of ultrahigh temperature heteromodulus ceramics based on group 4 transition metal carbides /I. L. Shabalin, Y. Wang, A. V. Krynkin [et al.] // Advances in Applied Ceramics. ― 2010. ― Vol. 109, № 7. ― P. 405‒415.
7. Medri, V. Comparison of ZrB2‒ZrC‒SiC composites fabricated by spark plasma sintering and hot pressing / V. Medri, F. Monteverde, A. Balbo [et al.] // Adv. Eng. Mater. ― 2005. ― Vol. 7, № 3. ― P. 159‒163.
8. Popov, O.Structure formation of TiB2‒TiC‒B4C‒C hetero-modulus ceramics via reaction hot pressing / O. Popov, S. Chornobuk, V. Vishnyakov // Int. J. Refract. Met. Hard Mater. ― 2017. ― Vol. 64. ― P. 106‒112.
9. Sciti, D. Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol. % TaSi2 or MoSi2 / D. Sciti, L.Silvestroni, S. Guicciardi, D. Dalle Fabbriche, A. Bellosi // J. Mater. Res. ― 2009. ― Vol. 24, № 6. ― С. 2056‒2065.
10. Ghaffari, S. A. Spark plasma sintering of TaC‒HfC UHTC via disilicides sintering aids / S. A. Ghaffari, M. A. Faghihi-Sani, F. Golestani-Fard, H. Mandal // J. Eur. Ceram. Soc. ― 2013. ― Vol. 33, № 8. ― P. 1479‒1484.
11. Соколов, П. С. Сверхвысокотемпературная керамика на основе ZrB2‒SiC: получение и основные свойства / П. С. Соколов, А. В. Аракчеев, И. Л. Михальчик [и др.] // Новые огнеупоры. ― 2017. ― № 1. ― С. 33‒39. [Sokolov, P. S. Ultrahigh-temperature ceramic based on ZrB2‒SiC: preparation and main properties / P. S. Sokolov, A. V. Arakcheev, I. L. Mikhal’chik [et al.] // Refractories and Industrial Ceramics. ― 2017. ― Vol. 58, № 1. ― P. 46‒52.]
12. Inoue, R. Initial oxidation behaviors of ZrB2‒SiC‒ZrC ternary composites above 2000 °C / R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, K. Goto // J. Alloys Compd. ― 2018. ― Vol. 731. ― P. 310‒317.
13. Arai, Y. In-situ observation of oxidation behavior in ZrB2‒SiC‒ZrC ternary composites up to 1500 °C using high-temperature observation system / Y. Arai, R. Inoue, H. Tanaka, Y. Kogo, K. Goto // J. Ceram. Soc. Jpn. ― 2016. ― Vol. 124, №. 9. ― P. 890―897.
14. Kubota, Y. Oxidation behavior of ZrB2‒SiC‒ZrC at 1700 °C / Y. Kubota, H. Tanaka, Y. Arai [et al.] // J. Eur. Ceram. Soc. ― 2017. ― Vol. 37, № 4. ― P. 1187‒1194.
15. Akin, I. Mechanical and oxidation behavior of spark plasma sintered ZrB2‒ZrC‒SiC composites / I. Akin, G. Goller // J. Ceram. Soc. Jpn. ― 2012. ― Vol. 120, № 1400. ― P. 143‒149.
16. Wang, Z.The oxidation behaviors of a ZrB2‒SiC‒ZrC ceramic / Z. Wang, Z. Wu, G. Shi // Solid State Sciences. ― 2011. ― Vol. 13, № 3. ― P. 534‒538.
17. Wu, Z. Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic / Z. Wu, Z. Wang, G. Shi, J. Sheng // Composites Science and Technology. ― 2011. ― Vol. 71, № 12. ― P. 1501‒1506.
18. Wu, H. Fabrication and properties of 2D C/C‒ZrB2‒ZrC‒SiC composites by hybrid precursor infiltration and pyrolysis / H. Wu, C. Xie, W. Zhang [et al.] // Advances in Applied Ceramics. ― 2013. ― Vol. 112, № 6. ― P. 366‒373.
19. Li, L. Preparation and properties of 2D C/SiC‒ZrB2‒TaC composites / L. Li, Y. Wang, L. Cheng, L. Zhang // Ceram. Int. ― 2011. ― Vol. 37, № 3. ― P. 891‒896.
20. Ren, X.Ultra-high temperature ceramic TaB2‒TaC‒SiC coating for oxidation protection of SiC-coated carbon/carbon composites / X. Ren, H. Li, Q. Fu, K. Li// Ceram. Int. ― 2014. ― Vol. 40, № 7. ― P. 9419‒9425.
21. Орданьян, С. С. О строении систем SiC‒B4C‒MedB2 и перспективах создания композиционных керамических материалов на их основе / С. С. Орданьян, Д. Д. Несмелов, Д. П. Данилович, Ю. П. Удалов // Известия вузов. Порошковая металлургия и функциональные покрытия. ― 2016. ― № 4. ― С. 41‒50. [Ordanyan, S. S. Revisiting the Structure of SiC‒B4C‒MedB2 systems and prospects for the development of composite ceramic materials based on them / S. S. Ordanyan, D. D. Nesmelov, D. P. Danilovich, Yu. P. Udalov // Russian Journal of Non-Ferrous Metals. ― 2017. ― Vol. 58, № 5. ― P. 545‒551.]
22. Ordanyan, S. S. Nonoxide high-melting point compounds as materials for extreme conditions / S. S. Ordanyan, S. V. Vikhman, D. D. Nesmelov[et al.] // Advances in Science and Technology. ― 2014. ― Vol. 89. ― С. 47‒56.
23. Орданьян, С. С. Взаимодействие в системе ZrC‒ZrB2 / С. С. Орданьян, В. И. Унрод // Порошковая металлургия. ―1975. ― № 5 (149). ― С. 61‒64. [Ordan'yan, S. S. Reactions in the system ZrC‒ZrB2 / S. S. Ordan'yan, V. I. Unrod // Soviet Powder Metallurgy and Metal Ceramics. ― 1975. ― Vol. 14, № 5. ― С. 393‒395.]
24. Орданьян, С. С. Взаимодействие в системе TaC‒TaB2 / С. С. Орданьян, В. И. Унрод, В. С. Полищук, Н. М. Сторонкина // Порошковая металлургия. ― 1976. ― № 9 (165). ― С. 40‒43. [Ordan'yan, S. S. Reactions in the system TaC‒TaB2 / S. S. Ordan'yan, V. I. Unrod, V. S. Polishchuk, N. M. Storonkina // Soviet Powder Metallurgy and Metal Ceramics. ― 1976. ― Vol. 15, № 9. ― P. 692‒695.]
25. Орданьян, С. С. Взаимодействие в системе HfC‒HfB2 / С. С. Орданьян, В. И. Унрод, А. Е. Луценко // Неорганические материалы. ― 1977. ― Т. 13, № 3. ― С. 546, 547.
26. Орданьян, С. С. О закономерностях взаимодействия в системах MIV,VC-MIV,VB2 / С. С. Орданьян // Неорганические материалы. ― 1980. ― Т. 16, № 8. ― С. 1407‒1411.
27. Cedillos-Barraza, O. Investigating the highest melting temperature materials: a laser melting study of the TaC‒HfC system / O. Cedillos-Barraza, D. Manara, K. Boboridis [et al.] // Scientific reports. ― 2016. ― Vol. 6. ― Article 37962.
28. Jackson, H. F. Laser melting of spark plasma‐sintered zirconium carbide: thermophysical properties of a generation IV very high temperature reactor material / H. F. Jackson, D. J. Daniel, W. J. Clegg [et al.] // International Journal of Applied Ceramic Technology. ― 2010. ― Vol. 7, № 3. ― P. 316‒326.
29. Manara, D.The ZrC‒C eutectic structure and melting behaviour: a high-temperature radiance spectroscopy study / D. Manara, H. F. Jackson, C. Perinetti-Casoni[et al.] // J. Eur. Ceram. Soc. ― 2013. ― Vol. 33, № 7. ― P. 1349‒1361.
30. Shabalin, I. L. Carbon (Graphene/Graphite) / I. L. Shabalin // Ultra-High Temperature Materials I. ― Springer, Dordrecht, 2014. ― P. 7‒235.
31. Savvatimskiy, A. I. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963‒2003) / A. I. Savvatimskiy // Carbon. ― 2005. ― Vol. 43, № 6. ― P. 1115‒1142.
32. Zhang X. Densification and mechanical properties of TaC-based ceramics / X. Zhang, G. E. Hilmas, W. G. Fahrenholtz // Mater. Sci. Eng. A. ― 2009. ― Vol. 501, № 1/2. ― P. 37‒43.
33. Sorrell, C. C. Mechanical properties of ZrC‒ZrB2 and ZrC‒TiB2 directionally solidified eutectics / C. C. Sorrell, V. S. Stubican, R. C. Bradt // J. Am. Ceram. Soc. ― 1986. ― Vol. 69, № 4. ― P. 317‒321.
34. Sorrell, C. C. Directional solidification of (Ti, Zr) carbide ‒ (Ti, Zr) diboride eutectics / C. C. Sorrell, H. R. Beratan, R. C. Bradt, V. S. Stubican // J. Am. Ceram. Soc. ― 1984. ― Vol. 67, № 3. ― P. 190‒194.
35. Bogomol, I. The bending strength temperature dependence of the directionally solidified eutectic LaB6‒ZrB2 composite /I. Bogomol, T. Nishimura, Y. Nesterenko [et al.] // J. Alloys Compd. ― 2011. ― Vol. 509, № 20. ― P. 6123‒6129.
36. Castle, E. Processing and properties of high-entropy ultrahigh temperature carbides / E. Castle, T. Csanádi, S. Grasso [et al.] // Scientific Reports. ― 2018. ― Vol. 8, № 1. ― Article 8609.
37. Dusza, J. Microstructure of (Hf‒Ta‒Zr‒Nb) C high-entropy carbide at micro and nano/atomic level / J. Dusza, P. Švec, V. Girman [et al.] // J. Eur. Ceram. Soc. ― 2018. ― Vol. 38, № 12. ― P. 4303‒4307.
38. Simonenko, E. P. Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology / E. P. Simonenko, N. A. Ignatov, N. P. Simonenko [et al.] // Russian Journal of Inorganic Chemistry. ― 2011. ― Vol. 56, № 11. ― P. 1681‒1687.
39. Zeng, Y. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C / Y. Zeng, D. Wang, X. Xiong [et al.] // Nature Communications. ― 2017. ― Vol. 8. ― Article 15836.
40. Hong, Q. J.Prediction of the material with highest known melting point from ab initio molecular dynamics calculations / Q. J. Hong, A. van de Walle // Phys. Rev. B. Condens. Mater. ― 2015. ― Vol. 92, № 2. ― P. 020104.
41. Arblaster, J. Solution to highest melting point challenge / J. Arblaster // Analytical and bioanalytical chemistry. ― 2015. ― Vol. 407, № 22. ― Article 6589.
42. Кац, С. М. Ползучесть сплавов систем ZrC‒ZrB2 и TiC‒TiB2 при сжатии / С. М. Кац, С. С. Орданьян, В. И. Унрод // Порошковая металлургия. ― 1981. ― № 12 (228). ― С. 70‒75. [Kats, S. M. Compressive creep of alloys of the ZrC‒ZrB2 and TiC‒TiB2 systems / S. M. Kats, S. S. Ordan'yan, V. I. Unrod // Soviet Powder Metallurgy and Metal Ceramics. ― 1981. ― Vol. 20, № 12. ― С. 886‒890.]
43. Smith, C. J. Phase, hardness, and deformation slip behavior in mixed HfxTa1-xC / C. J. Smith, X. X. Yu, Q. Guo [et al.] // Acta Mater. ― 2018. ― Vol. 145. ― P. 142‒153.
44. Wang, X. G. Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M = V, Nb, and Ta) additions / X. G. Wang, J. X. Liu, Y. M. Kan[et al.] // J. Eur. Ceram. Soc. ― 2012. ― Vol. 32, № 8. ― P. 1795‒1802.
45. Wang, Y. Oxidation behavior of ZrB2‒SiC‒TaC Ceramics / Y. Wang, B. Ma, L. Li, L. An // J. Am. Ceram. Soc. ― 2012. ― Vol. 95, № 1. ― P. 374‒378.
46. Demirskyi, D. High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation / D. Demirskyi, T. Nishimura, Y. Sakka, O. Vasylkiv // Ceram. Int. ― 2016. ― Vol. 42, № 1. ― P. 1298‒1306.
47. Данилович, Д. П. Система SiC‒TiC‒TiB2 как основа керамоматричных композиционных материалов / Д. П. Данилович, В. И. Румянцев, С. С. Орданьян // Вопросы материаловедения. ― 2009. ― №. 4. ― С. 42‒47.
48. ГОСТ 20019‒74.Сплавы твердые спеченные. Метод определения предела прочности при поперечном изгибе (с Изменениями № 1, 2, 3). ― Введ. 01.01.1976. ― М. : Изд-во стандартов, 1986. ― 49 c.
49. Liu, J. X. Pressureless sintering of tantalum carbide ceramics without additives / J. X. Liu, Y. M. Kan, G. J. Zhang // J. Am. Ceram. Soc. ― 2010. ― Vol. 93, №. 2. ― P. 370‒373.
50. Rezaei, F. Densification, microstructure and mechanical properties of hot pressed tantalum carbide /F. Rezaei, M. G. Kakroudi, V. Shahedifar [et al.] // Ceram. Int. ― 2017. ― Vol. 43, № 4. ― P. 3489‒3494.
Supplementary files
For citation: Nesmelov D.D., Shabalkin I.D., Lysenkov A.S., Ordanian S.S. Physical and mechanical properties of the hotpressed ZrB2‒TaC‒SiC materials. NOVYE OGNEUPORY (NEW REFRACTORIES). 2018;(10):16-23. https://doi.org/10.17073/1683-4518-2018-10-16-23
Refbacks
- There are currently no refbacks.