Phase formation at the Ti2AlN under the spark-plasma sintering in the Ti/AlN system


https://doi.org/10.17073/1683-4518-2018-12-49-53

Full Text:




Abstract

The synthesis of the Ti2AlN-based material by means of the mechanical activation (MA) of the Ti‒AlN powder mixture in the planetary mill followed by the vacuum spark-plasma sintering (SPS). It was shown that the phase ratio AlN/Ti gradually decreases under mechanical activation. The data are given on the sample's phase composition, density and hardness after the SPS. The maximum Ti2AlN content value of 90 mass percent was achieved at the SPS temperature 1300 °C. The samples had the lowest porosity value of 1,9 % at the SPS temperature 1200‒1300 °C, the HV0,5 hardness being close to 7 GPa.


About the Authors

V. G. Gilev
ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»
Russian Federation


M. N. Kachenyuk
ФГБОУ ВО «Пермский национальный исследовательский политехнический университет»
Russian Federation


References

1. Ковалев Д. Ю. Реакционный синтез МАХ-фазы Ti2AlN / Д. Ю. Ковалев, М. А. Лугинина, А. Е. Сычев// Изв. вузов. Порошковая металлургия и функциональные покрытия. ― 2016. ― № 2. ― С. 41‒46.

2. Radovic, M. MAX phases: bridging the gap between metals and ceramics / M. Radovic, M. W. Barsoum // Am. Ceram. Soc. Bull. ― 2013. ― Vol. 92, № 3. ― P. 20‒27.

3. Barsoum, M. W. Elastic and mechanical properties of the MAX phases / M. W. Barsoum, M. Radovic // Annual Review of Materials Research. ― 2011. ― Vol. 41. ― P. 195‒227.

4. Yan, M. Synthesis of high-purity bulk Ti2AlN by spark plasma sintering (SPS) / M. Yan, B. Mei, J. Zhu, C. Tian, P. Wang // Ceram. Int. ― 2008. ― Vol. 34, № 6. ― P. 1439‒1442.

5. Xiao, J. Investigations on radiation tolerance of Mn+1AXn phases: study of Ti3SiC2, Ti3AlC2, Cr2AlC, Cr2GeC, Ti2AlC and Ti2AlN / J. Xiao, T. Yang, C. Wang, J. Xue, Y. Wang // J. Am. Ceram. Soc. ― 2015. ― Vol. 98, № 4. ― P. 1323‒1331.

6. Chen, K. Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: In Vitro Tests and First-Principles Calculations / K. Chen, N. Qiu, Q. Deng[et al.] // ACS Biomaterials Science and Engineering. ― 2017. ― Vol. 3, № 10. ― P. 2293‒2301. DOI: 10.1021/acsbiomaterials.7b00432.

7. Cui, B. Microstructural evolution during hightemperature oxidation of spark plasma sintered Ti2AlN ceramics / B. Cui, R. Sa, D. D. Jayaseelan[et al.] // Acta Materialia. ― 2012. ― Vol. 60, № 3. ― P. 1079‒1092.

8. Barsoum, M. W. Layered machinable ceramics for high temperature applications / M. W. Barsoum, D. Brodkin, T. ElRaghy // Scripta Mater. ― 1997. ― Vol. 36, № 5. ― P. 535‒541.

9. Liu, Y. Reactive consolidation of layered-ternary Ti2AlN ceramics by spark plasma sintering of a Ti/AlN powder mixture / Y. Liu, Z. Shi, J. Wang[et al.] // J. Eur. Ceram. Soc. ― 2011. ― Vol. 31, № 5. ― P. 863‒868.

10. Kovalev, D. Y. Reaction Synthesis of the Ti2AlN MAXPhase / D. Y. Kovalev, M. A. Luginina, A. E. Sytschev // Russian Journal of Non-Ferrous Metals. ― 2017. ― Vol. 58, № 3. ― P. 303‒307.

11. Luginina, M. A. Preparation of Ti2AlN by reactive sintering / M. A. Luginina, D. Y. Kovalev, A. E. Sytschev// Int. J. Self-Propag. High-Temp. Synth. ― 2016. ― Vol. 25, № 1. ― P. 35‒38.

12. Guitton, A. Dislocation analysis of Ti2AlN deformed at room temperature under confining pressure / A. Guitton, A. Joulain, L. Thilly, C. Tromas// Philosophical Magazine. ― 2012. ― Vol. 92, № 36. ― P. 4536‒4546.

13. Lin, Z. J. Synthesis and microstructure of layeredternary Ti2AlN ceramic / Z. J. Lin, M. J. Zhuo, M. S. Li [et al.] // Scripta Mater. ― 2007. ― Vol. 56, № 12. ― P. 1115‒1118.

14. Liu, W. Fabrication of Ti2AlN ceramics with orientation growth behavior by the microwave sintering method / W. Liu, C. Qiu, J. Zhou[et al.] // J. Eur. Ceram. Soc. ― 2015. ― Vol. 35, № 5. ― P. 1385‒1391.

15. Liu, Y. Highly textured Ti2AlN ceramic prepared via thermal explosion followed by edge-free spark plasma sintering / Y. Liu, Y. Li, F. Li [et al.] // Scripta Mater. ― 2017. ― Vol. 136. ― P. 55‒58.

16. Каченюк, М. Н. Влияние механоактивации на смеси для синтеза карбосилицида титана / М. Н. Каченюк, В. Г. Гилёв, А. А. Сметкин // Новые огнеупоры. ― 2018. ― № 5. ― С. 34‒38. [Kachenyuk M. N.Effect of mechanical activation on a mixture for synthesizing titanium silicon carbide / M. N. Kachenyuk, V. G. Gilev, A. A. Smetkin // Refractories and Industrial Ceramics. ― 2018. ― Vol. 59, № 3. ― Р. 257‒261.]

17. Shkodich, N. F. Effect of mechanical activation on ignition and combustion of Ti‒BN and Ti‒SiC‒C blends / N. F. Shkodich, A. S. Rogachev, S. G. Vadchenko[et al.] // Int. J. Self-Propag. High-Temp. Synth. ― 2011. ― Vol. 20, № 3. ― P. 191‒199.

18. Henke, B. L. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50‒30000 eV, Z= 1‒92 / B. L. Henke, E. M. Gullikson, J. C. Davis // At. Data Nucl. Data Tables. ― 1993. ― Vol. 54, № 2. ― Р. 181‒342.

19. http://henke.lbl.gov/optical_constants/atten2.html.


Supplementary files

For citation: Gilev V.G., Kachenyuk M.N. Phase formation at the Ti2AlN under the spark-plasma sintering in the Ti/AlN system. NOVYE OGNEUPORY (NEW REFRACTORIES). 2018;(12):49-53. https://doi.org/10.17073/1683-4518-2018-12-49-53

Views: 367

Refbacks

  • There are currently no refbacks.


ISSN 1683-4518 (Print)