К. т. н. К. Г. Земляной¹ (🖂), И. В. Кормина², к. т. н. И. А. Павлова¹

¹ ФГАОУ ВО «Уральский федеральный университет», г. Екатеринбург, Россия ² ОАО «Полипласт», г. Первоуральск Свердловской обл., Россия

удк 661.682.001.5 СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ МИКРОКРЕМНЕЗЕМА РАЗЛИЧНЫХ ПРОИЗВОДИТЕЛЕЙ

Приведены результаты исследования различных типов микрокремнезема отечественного и импортного производства, определены его физико-химические и технологические свойства, установлены особенности структуры. Сделаны предположения о влиянии свойств и структуры микрокремнезема на реологические свойства бетонных смесей с его использованием.

Ключевые слова: *микрокремнезем, зерновое распределение, рентгенограмма, дериватограмма, рамановская спектроскопия.*

настоящее время низкоцементные огнеупор-Вные бетоны получили широкое применение при изготовлении футеровки тепловых агрегатов и формовании бетонных изделий благодаря ряду преимуществ: легкости применения, возможности получения отливок сложной формы, энергоэффективности и хорошим физико-механическим характеристикам. В производстве бетонов важное значение имеют такие параметры, как суммарный гранулометрический состав. форма частиц. качество и тип сырья, особенно тонких фракций, а также добавки (дефлокулянты, диспергаторы, ускорители) и гидравлические связки — цементы. Одной из добавок, обеспечивающих улучшение реологических и физико-керамических свойств низкоцементных огнеупорных бетонов, является микрокремнезем [1]. В настоящее время в огнеупорных низкоцементных бетонах применяют микрокремнезем и комплексные добавки на его основе производства фирмы Elkem [2]. В России имеются производства, в которых микрокремнезем образуется при охлаждении и фильтровании печных газов в производстве металлического кремния, феррокремния и других кремниевых сплавов в электродуговых печах [3, 4]. Собранный из систем газоочистки микрокремнезем широко используется в производстве строительных материалов [5-7], вяжущих [8-10], модификаторов для строительных бетонов [11–13]. Известны попытки использовать отечественный микрокремнезем вместо импортного в огнеупорных низкоцементных бетонах [14-16], но широкого применения этот метод не получил. В настоящей работе ис-

> ⊠ К. Г. Земляной E-mail: kir77766617@yandex.ru

следованы составы и свойства отечественного и импортного микрокремнезема в качестве основы модифицирующих добавок для низкоцементных огнеупорных бетонов.

Для исследования был использован микрокремнезем марок МК-85 и МКУ-85 предприятия Кузнецкие ферросплавы (КФ), МК-85 производства ЧЭМК, аморфный кремнезем (АК), полученный в процессе переработки отходов асбестового производства; в качестве образцов сравнения принят микрокремнезем марки FS-69 производства компании Fu zhou wan jia he chu kou mao yi you gong si, КНР, и марки U 971 производства компании Elkem Silicon Materials, Норвегия. Химический состав микрокремнезема определяли методом эмиссионного спектрального анализа с индуктивносвязанной плазмой на оптическом эмиссионном спектрометре Optima 4300 DV фирмы Perkin Elmer, США, зерновой состав — на лазерном седиментографе SALD-2201 (WingSALD II: Version 3.0.0) фирмы Shimadzu Co., Ltd, Япония. Фазовый состав исследовали на дифрактометре с вращающимся анодом Miniflex 600 (Си К_а-излучение, λ = 1,541862 Å, интервал съемки 3,00-90,00 град, шаг сканирования 0,02 град) фирмы Rigaku - Carl Zeiss, Япония, с программами управления и сбора данных MiniFlex guidance и пакетом обработки данных PDXL Basic. Идентификацию дифракционных максимумов проводили с использованием банка данных JSPDS. Для полуколичественной оценки содержания фаз использовали корундовое число RIR (Reference Intensity Ratio) по методу Чанга (Chung) [17]. Изменение фазового состава при нагревании определяли термогравиметрическим методом на дифференциальном сканирующем дериватографе STA 449 F3 Jupiter (Netzsch-Gerätebau GmbH) с использованием программного пакета Proteus Analysis 5.2. Форму, размеры и химический состав зерен исследовали методом растровой электронной микроскопии на микроскопе

JSM 6390-LA фирмы JEOL, условия съемки 15 кВ, SEI, BES, рабочее состояние 10 мм.

Структуру Si-O-связей в исследуемых материалах исследовали методом комбинационного рассеяния света на рамановском микроскопеспектрометре U 1000 фирмы Renishaw, Англия, под микроскопом Leica DML, оборудованным нотчфильтром и CCD-камерой. В качестве источника света использовали твердотельный лазер модели LCM-S-11 мощностью 40 мВт (50 % мощности) с длиной волны 532 нм, объектив микроскопа ×50, диапазон съемки 50-4000 см⁻¹, спектральное разрешение 2 см⁻¹, размер лазерного пучка 1 мкм, длительность экспозиции 40 с. Химический состав исследуемого микрокремнезема приведен в табл. 1, зерновой состав представлен на рис. 1 и в табл. 2.

Из табл. 1 видно, что отечественный товарный микрокремнезем содержит большее количество примесей и пропорционально меньшее количество SiO₂, чем импортный. Экспериментальный АК также содержит большое количество примесей, которые могут быть удалены дополнительной очисткой в процессе получения до содержания SiO₂ не менее 98 мас. %. Из рис. 1 и

Таблица 1. Химический состав исследуемого микрокремнезема, мас. %										
Компонент	AK	МК-85 (КΦ)	МКУ-85 (КФ)	МК-85 (ЧЭМК)	FS-69 (KHP)	U 971 (Elkem)				
Al ₂ O ₃	0,08	0,43	0,42	0,12	0,20	0,24				
CaO	1,44	0,28	0,27	0,11	0,05	0,29				
Fe_2O_3	1,30	1,19	1,20	0,41	0,04	0,06				
K ₂ O	<0,10	2,95	2,92	1,63	0,41	0,28				
MgO	1,27	1,31	1,34	1,20	0,08	0,13				
Mn_2O_3	0,10	0,27	0,26	0,18	0,01	0,01				
Na ₂ O	0,04	1,22	1,21	1,09	0,08	0,20				
SO ₃	<0,90	<0,90	<0,80	<0,90	<0,90	<0,90				
SiO ₂	92,79	90,71	90,80	94,09	97,74	98,37				
С	<0,10	0,82	0,87	0,93	0,81	0,65				

Рис. 1. Кривые зернового распределения (частные остатки *Q*₃ и интегральные проходы *q*₃) микрокремнезема: *a* — аморфного (АК); *б* — МК-85 (КФ); *в* — МКУ-85 (КФ); *г* — МК-85 (ЧЭМК); *д* — FS-69 (КНР); *e* — U 971 (Elkem)

			,			
Показатели	AK	МК-85 (КФ)	МКУ-85 (КФ)	МК-85 (ЧЭМК)	FS-69 (KHP)	U 971 (Elkem)
Удельная поверхность, м²/г	28,5	39,3	15,0	112,0	27,0	12,8
Размер зерна, мкм:						
максимальный	101,2	29,0	66,7	12,6	35,7	82,1
минимальный	0,5	0,2	0,2	0,2	0,6	1,6
средний	9,2	6,6	17,4	2,3	9,7	20,5
Доля частиц, %, размерами, мкм:						
<5	34	37	20	77	16	9
5-20	37	61	40	23	77	43
>20	29	2	40	-	7	48
Доля поверхности, %, занимае-						
мой частицами размерами, мкм:						
<5	80	75	66	92	50	45
5-20	17,0	24,6	26,0	8,0	48,0	43,0
>20	3,0	0,4	7,0	-	2,0	2,0
Распределение частиц по раз-						
мерам, мкм:						
мода 1	4,5	7,8	6,5	0,41	11,3	7,5
мода 2	25,0	-	22,5	5,3	-	28,0
Насыпная плотность, г/см ³	0,25	0,16	0,28	0,18	0,60	0,41

Таблица 2.	Показатели зе	рнового расп	ределения и	исследуемого	микрокр	емнезема
гаолица Ег			POHONON			01111000110

табл. 2 видно, что микрокремнезем FS-69 имеет мономодальное зерновое распределение, а все остальные — бимодальное. Минимальный размер зерен и, соответственно, максимальную удельную поверхность имеет микрокремнезем МК-85 (ЧЭМК). Следует отметить, что в отечественном микрокремнеземе доля частиц фракции мельче 5 мкм существенно больше, чем в импортном, — 20-77 и 9-16 % соответственно. Соответственно, и доля удельной поверхности, приходящейся на частицы размерами менее 5 мкм, существенно выше — 66-92 и 45-50 % соответственно. В импортном микрокремнеземе частицы равномерно распределены между фракциями мельче 5 и 5-20 мкм; среди отечественных порошков к такому распределению частиц приближается уплотненный микрокремнезем МКУ-85.

Фазовый состав исследуемого микрокремнезема приведен в табл. З. Видно, что основной фазой в исследуемом микрокремнеземе является аморфная фаза (до 92-98 мас. %). В отечественном микрокремнеземе в качестве примесей присутствуют в основном силикаты магния, по-видимому образовавшиеся при конденсации испарившихся при плавке феррохрома примесей в хромитовой руде — серпентинитов, дунитов и т. п. В аморфном кремнеземе, полученном из серпентинита методом гидрометаллургии, вся кристаллическая фаза состоит из энстатита. В пирогенном микрокремнеземе присутствуют также слабозакристаллизованные модификации SiO₂ — кварц и кристобалит. В импортном микрокремнеземе примеси силикатов магния не обнаруживаются, что может указывать на другой характер сырья для их получения.

Результаты исследований поведения микрокремнезема при нагревании показаны на рис. 2, из которого видно:

промышленный микрокремнезем, как отечественный, так и импортный, имеет примерно одинаковую конечную температуру плавления — примерно 1330–1340 °С при температуре начала плавления отечественных примерно 1170–1230 °С и импортных примерно 1260–1300 °С. Повидимому, это объясняется меньшим содержанием примесей в импортном микрокремнеземе;

– отечественный промышленный микрокремнезем имеет примерно одинаковую температуру начала окисления углеродистой составляющей — 425-441 °С (начало потери массы 405-427 °С), тогда как в импортных материалах характер окисления различается: у FS-69 оно начинается при 545 °С, у U 971 при 200,3 °С. При этом в микрокремнеземе FS-69 потери массы начинаются от 570 °С, а в U 971 четко выраженного начала потерь массы нет; она равномерно

Таблица 3. Фазовый состав исследуемого микрокремнезема, мас. % *									
Фаза	AK	МК-85 (КФ)	МКУ-85 (КФ)	МК-85 (ЧЭМК)	FS-69 (KHP)	U 971 (Elkem)			
Стеклофаза	92-98	92-98	92-98	92-98	95-98	92-98			
Силикаты магния:									
энстатит Mg ₂ Si ₂ O ₆	2-5	-	0,5-2,0	0,5-1,0	-	-			
антигорит Mg ₆ (Si ₄ O ₁₀)(OH) ₈	1–3	-	-	2-5	-	-			
пироксены (Mg _{1-n} ,Fe _n) ₂ Si ₂ O ₆	-	5-8	3–5	-	-	-			
Оксид кремния:									
кристобалит	-	-	0,5-2,0	0,5-1,0	-	2-4			
кварц	1–3	0,5-2,0	-	1-3	-	-			
Карбид кремния	-	-	-	-	2-5	0,5-2,0			
* Полуколичественная оценка по	о корундовому	числу (RIR-ме	тод).						

СЫРЬЕВЫЕ МАТЕРИАЛЫ

Рис. 2. Дериватограммы микрокремнезема: *a* — AK; *б* — MK-85 (КФ); *в* — MKУ-85 (КФ); *г* — MK-85 (ЧЭМК); *д* — FS-69 (КНР); *e* — U 971 (Elkem)

уменьшается начиная от 53 °С (с потерей физически связанной воды). Кроме того, потери массы во всех исследуемых материалах происходят в 2 этапа: в интервалах 100-400 и 500-700 °С, кроме микрокремнезема U 971, у которого потери массы равномерно происходят в интервале 50-1000 °С. Такое поведение материала связано со структурой (размером и степенью совершенства частиц) и/или видом составляющей, теряющей массу при нагревании. Это можно объяснить разными источниками сырья, разными процессами получения основной массы микрокремнезема и материалов фирмы Elkem;

- в отечественном микрокремнеземе присутствуют эндотермические эффекты при 825 °С и экзотермические эффекты при 897 и 1260-1297 °С, которые указывают на присутствие в материале пироксенов (силикатов / гидросиликатов магния и железа);

 в импортном микрокремнеземе присутствуют эндотермические эффекты при 898–927 и 980–1000 °С, указывающие на присутствие SiC или полупродуктов карбидизации кремнезема;

– во всех исследуемых материалах имеются эндотермический эффект примерно при 510 °С и экзотермический эффект примерно при 1030 °С, связанные соответственно с полиморфным превращением кристобалита и кристаллизацией стеклофазы в кристобалит.

МИКРОСТРУКТУРА ЧАСТИЦ ИССЛЕДУЕМОГО МИКРОКРЕМНЕЗЕМА

Вид и состояние зерен аморфного микрокремнезема АК показаны на рис. 3. Материал

СЫРЬЕВЫЕ МАТЕРИАЛЫ

×30000

представлен зернами — конгломератами размерами от 5 до 70 мкм, состоящими из частиц размерами от 0,2 до 5 мкм. Частицы имеют

20000

Рис. 4. Точки микроанализа зерен АК

0	(Содержание элемента, мас. %, в точке								
Элемент	001	002	003	004	005	006	007			
0	23,85	19,97	15,94	31,61	24,45	12,37	14,86			
Si	63,55	57,48	68,07	42,58	56,92	43,47	58,10			
Na	-	0,59	-	0,61	-	-	-			
Ca	0,93	1,36	0,60	0,53	0,48	0,82	0,84			
Al	0,66	-	0,72	0,99	0,66	2,20	4,23			
Mg	11,01	9,72	13,01	18,75	11,21	6,22	9,39			
S	-	-	0,79	0,82	2,04	17,62	1,28			
K	-	0,77	0,87	1,45	2,58	-	2,21			
Fe	-	10,10	-	2,66	1,66	7,28	9,09			

Таблица 4. Химический состав АК

Рис. 3. Серия изображений поверхности АК, полученных во вторичных и отраженных электронах при разном увеличении

обломочную неправильную форму с выраженными гранями и углами. Результаты рентгеновского микроанализа химического состава частиц АК показаны на рис. 4 и приведены в табл. 4. Основными примесями в АК являются оксиды алюминия и магния, распределенные равномерно с оксидом кремния. Примеси оксидов серы, кальция, железа и щелочных металлов локализованы в отдельных зернах, причем распределения оксидов кальция и щелочных металлов несколько коррелируют друг с другом, в то время как распределения оксидов железа и серы не связаны ни с одним их вышерассмотренных элементов.

Вид и состояние зерен микрокремнезема MK-85 (КФ) показаны на рис. 5. Материал представлен отдельными округлыми и заоваленными разобщенными частицами размерами от 0,1-0,2 до 1-2 мкм. Результаты рентгеновского микроанализа химического состава частиц MK-85 (КФ) показаны на рис. 6 и приведены в табл. 5. Вид и состояние зерен микрокремнезема MK-85 (ЧЭМК) показаны на рис. 7. Материал представлен отдельными округлыми разобщенными частицами размерами от 0,05 до 1 мкм. Результаты рентгеновского микроанализа химического состава частиц MK-85 (ЧЭМК) показаны на рис. 8 и приведены в табл. 6. Видно, что основными примесями в микрокремнеземе

отечественного производства являются оксиды алюминия, магния и щелочных металлов, которые распределены равномерно по объему частиц. Следует отметить довольно большое содержание примесей (5-6 мас. %) и их равномерное распределение по объему материала. Примерно одинаковый состав и содержание примесей указывают на одинаковое сырье и схожесть процессов, при которых получается микрокремнезем.

Вид и состояние зерен микрокремнезема FS-69 показаны на рис. 9. Материал представлен отдельными и агломерированными округлыми частицами размерами от 0,2 до 15 мкм. Результаты рентгеновского микроанализа химического состава частиц FS-69 показаны на рис. 10 и приведены в табл. 7. Вид и состояние зерен микрокремнезема U 971 показаны на рис. 11. Материал представлен отдельными и агломерированными округлыми частицами размерами от 0,1 до 20 мкм. Результаты рентгеновского микроанализа химического состава

Рис. 6. Точки микроанализа зерен МК-85 (КФ)

Таблица 5. Химический состав МК-85 (КФ)

Эле-	Содержание элемента, мас. %, в точке									
мент	001	002	003	004	005	006	007	008		
0	33,2	40,67	39,67	38,41	40,01	39,93	43,60	34,90		
Si	58,4	52,54	53,94	54,56	53,85	52,74	51,28	55,79		
Na	-	-	0,85	-	_	0,74	_	0,71		
Al	1,65	0,59	1,41	1,445	1,09	1,10	1,29	1,24		
Mg	0,95	1,06	0,60	0,87	1,28	0,91	0,43	1,26		
K	5,80	5,13	3,52	4,70	3,76	4,58	3,40	6,12		

35000

частиц U 971 показаны на рис. 12 и приведены в табл. 8.

20000

Из рис. 9–12 и табл. 7 и 8 видно, что импортный микрокремнезем отличается существенно меньшим содержанием примесных оксидов: в FS-69 в качестве примеси встречаются только атомы алюминия в количестве до 4 ат. %, а в U 971 примесей практически нет. Различаются также форма и размеры частиц: в импортных материалах частицы имеют меньшие размеры, округлую или заоваленную форму и собраны в рыхлые агломераты шарообразной формы.

Следует отметить, что в АК отношение Si/O (для SiO₂ стехиометрическое соотношение равно 0,887, для SiO — 1,75) равно 3,07; у отечественного микрокремнезема и импортного FS-69 оно колеблется в интервале 1,44–1,95, а у микрокремнезема U 971 оно существенно выше и составляет 2,46. Это говорит о близости к равновесному состоянию (стехиометрии) MK-85 и FS-69 и **Рис.** 7. Серия изображений поверхности МК-85 (ЧЭМК), полученных во вторичных и отраженных электронах при разном увеличении

Рис. 8. Точки микроанализа зерен МК-85 (ЧЭМК)

Таблица 6. Химический состав МК-85 (ЧЭМК)

Эле-		Содержание элемента, мас. %, в точке										
Meht	001	002	003	004	005	006	007	800				
0	38,39	28,95	37,81	32,98	26,41	32,51	34,81	30,06				
Si	55,68	63,94	57,04	61,24	70,28	61,03	59,39	65,96				
Na	-	0,82	-	-	-	0,97	1,04	0,69				
Al	0,89	2,02	1,32	1,05	1,42	0,79	1,08	0,78				
Mg	1,46	0,94	0,92	1,32	0,92	0,90	0,96	0,64				
K	3,58	3,33	2,90	3,42	0,97	3,81	2,72	1,88				

СЫРЬЕВЫЕ МАТЕРИАЛЫ

Рис. 9. Серия изображений поверхности FS-69, полученных во вторичных и отраженных электронах при разном увеличении

Рис. 10. Точки микроанализа зерен FS-69

Таблица 7.	Химический	состав	FS-69
------------	------------	--------	--------------

Эле-		Содержание элемента, мас. %, в точке								
мент	001	002	003	004	005	006	007	800	009	
0	27,49	38,11	32,33	32,12	36,21	33,77	35,60	33,39	22,54	
Si	71,34	60.90	66,82	66,79	62,67	65,04	63,17	65,55	73,49	
Al	1,16	1,00	0,85	1,09	1,13	1,19	1,23	1,06	3,97	

Рис. 12. Точки микроанализа зерен U 971

Таблица 8	8.	Химический	состав	U	971	L
-----------	----	------------	--------	---	-----	---

Элемент	Содержание элемента, мас. %, в точке								
	001	002	003	004	005	006			
0	34,26	35,42	37,75	24,15	27,61	29,97			
Si	65,74	64,58	62,25	75,85	72,39	70,03			

Рис. 11. Серия изображений поверхности U 971, полученных во вторичных и отраженных электронах при разном увеличении

большей степени нестехиометрии (недостатка) по кислороду у АК и U 971, что может быть вызвано либо анионными вакансиями в кристаллической структуре этих материалов, либо присутствием бескислородных (например, карбидных) фаз. Недостаток кислорода в структуре должен способствовать высокой химической активности материалов.

Для определения вида Si-O-связей в микрокремнеземе исследовали ИК-спектры образцов АК, МК-85 (ЧЭМК), МК-85 (КФ) и U 961. Результаты исследований показаны на рис. 13. Микрокремнезем МК-85 обоих производителей представлен хорошо закристаллизованным SiO₂ (эффекты в области 200-980 см⁻¹) и углеродом с аморфизированной структурой (эффекты в области 1050-2000 см⁻¹). Аморфный кремнезем АК и микрокремнезем U 971 имеют сильно аморф-

Рис. 13. Рамановские спектры АК (a), МК-85 (КФ) (б), МК-85 (ЧЭМК) (в), U 971 (г)

ную структуру (повышенный уровень фона). При этом АК представлен слабо аморфизированным SiO₂ (эффекты в области 200–980 см⁻¹ с основным эффектом при 490–500 см⁻¹), а U 971 — металлическим кремнием (эффект 510–515 см⁻¹) и сильно аморфизированным кремнеземом (эффекты 600 и 800 см⁻¹). Эффектов, соответствующих оксиду SiO, ни в одном исследуемом материале не обнаружено.

ЗАКЛЮЧЕНИЕ

Исследованы физико-химические свойства отечественного и импортного микрокремнезема: МК-85 и МКУ-85 предприятия «Кузнецкие ферросплавы», МК-85 производства ЧЭМК, аморфный кремнезем (АК), полученный в процессе переработки отходов асбестового производства, FS-69 (КНР) и U 971 (Elkem).

Установлено, что:

 по химическому составу отечественные материалы сильно отличаются от импортных существенно большим количеством примесей (оксидов железа и алюминия, щелочных и щелочноземельных металлов). При этом отечественный микрокремнезем также существенно различается — материалы предприятия «Кузнецкие ферросплавы» содержат в 2 раза большее количество оксидов железа и щелочных металлов;

- по зерновому составу микрокремнезем FS-69 имеет мономодальное распределение зерен, все остальные — бимодальное. Минимальный размер зерен и, соответственно, максимальную удельную поверхность имеет МК-85 производства ЧЭМК. В отечественном микрокремнеземе доля частиц размерами менее 5 мкм существенно больше, чем в материалах импортного производства, — 20-77 и 9-16 % соответственно. В импортных материалах частицы равномерно распределены между фракциями мельче 5 и 5-20 мкм, среди отечественных порошков к такому распределению частиц приближается уплотненный микрокремнезем МКУ-85 предприятия «Кузнецкие ферросплавы»;

 по фазовому составу все исследуемые микрокремнеземы похожи: основной фазой в них является аморфная фаза на основе SiO₂ (до 92-98 мас. %). В отечественном микрокремнеземе в качестве примесей присутствуют в основном фазы на основе силикатов магния. В пирогенном микрокремнеземе присутствуют также слабозакристаллизованные модификации SiO₂ — кварц и кристобалит. В импортном микрокремнеземе примесей на основе силикатов магния нет, но присутствуют фазы на основе кремния с существенным недостатком кислорода — плохо закристаллизованные карбидные или оксикарбидные, металлические или металлизированные;

 в импортных материалах частицы имеют меньшие размеры, округлую или заоваленную форму и собраны в рыхлые агломераты шарообразной формы. В отечественном микрокремнеземе частицы диспергированы и имеют более угловатую, обломочную форму;

- отношение Si/O в аморфном кремнеземе равно 3,07; у отечественных материалов и у импортного FS-69 оно колеблется в интервале

Библиографический список

1. *Мире, Б.* Изучение затвердевания и механических свойств огнеупорных бетонов на основе микрокремнеземистой гелевой связки с различными цементами / *Б. Мире //* Огнеупоры и техническая керамика. — 2013. — № 7/8. — С. 61-64.

2. Официальный сайт Elkem AS [Электронный ресурс]: Материалы для огнеупорной промышленности / Oslo, Norway: — 2017. Режим доступа : URL: https:// www.elkem.com/silicon-materials/refractories.

3. Аникин, А. Е. Техногенный микрокремнезем: основные характеристики и свойства, получение, металлургическое опробование и применение / А. Е. Аникин, Г. В. Галевский, В. В. Руднев, О. А. Полях // Вестник горно-металлургической секции Российской академии естественных наук. Отделение металлургии. — 2014. — № 33. — С. 90-103.

4. *Максимова, А. А.* Влияние различных природных и технологических факторов на улучшение потребительских свойств товарного микрокремнезема / *А. А. Максимова, К. А. Коренная, А. Ю. Пронякин* [и др.] // Металлургия: технологии, инновации, качество : сб. науч. тр. XIX Междунар. науч.-практ. конф. «Металлургия: технологии, инновация, качество» («Металлургия: технологии, инновация, качество» («Металлургия: Технологии, инновация, качество» («Металлургия: Технологии, инновация, качество», (2015. — С. 141–146.

5. **Федоркин, С. И.** Влияние микрокремнезема на свойства и структуру прессованных материалов на основе мелкодисперсных отходов горных пород / *С. И. Федоркин, Е. С. Макарова, И. И. Елькина* // Строительство и техногенная безопасность. — 2012. — № 42. — С. 47-51.

6. *Селяев, В. П.* Теплоизоляционные свойства материалов на основе тонкодисперсных минеральных порошков / *В. П. Селяев, А. К. Осипов, В. А. Неверов* [и др.] // Строительные материалы. — 2013. — № 1. — С. 61–63.

7. Горностаева, Е. Ю. Древесно-цементные композиции с модифицированной структурой на макро-, микро- и наноуровнях / Е. Ю. Горностаева, И. А. Лас1,44–1,95, у U 971 это отношение существенно выше и составляет 2,46. Это указывает на близость к равновесному состоянию (стехиометрии) микрокремнезема MK-85 и FS-69 и большую степень нестехиометрии (недостатка) по кислороду у микрокремнезема AK и U 971, что должно обусловливать их более высокую химическую активность;

 рамановская спектроскопия подтверждает более аморфный характер материалов АК и U 971, наличие металлической фазы в U 971, а также отсутствие во всех исследованных материалах фазы SiO.

Различные химический, гранулометрический и фазовый составы исследуемого микрокремнезема будут обусловливать их разные технологические свойства, а присутствие в МК-85 обоих производителей углерода — их меньшую гидрофильность.

ман, Е. А. Федоренко, Е. В. Камоза // Строительные материалы. — 2015. — № 11. — С. 13–16.

8. Бабков, В. В. Аморфный кремнезем в процессах структурообразования и упрочнения цементного камня / В. В. Бабков, А. И. Габитов, Р. Р. Сахибгареев // Башкирский химический журнал. — 2010. — № 3. — С. 206-210.

9. Закуражнов, М. С. Эффективное модифицирование систем твердения цементного камня с использованием активированного микрокремнезема / М. С. Закуражнов, О. В. Артамонова, Е. И. Шмитько // Вестник гражданских инженеров. — 2015. — № 5 (52). — С. 126-132.

10. **Шевченко, В. А.** Бесцементное вяжущее из зольнокремнеземистых композиций / В. А. Шевченко, Н. А. Артемьева, Л. А. Иванова [и др.] // Современные проблемы науки и образования. — 2015. — № 1. — С. 280–282.

11. **Шулдяков, К. В.** Влияние добавки «микрокремнезем – поликарбоксилатный суперпластификатор» на гидратацию цемента, структуру и свойства цементного камня / К. В. Шулдяков, Л. Я. Крамар, Б. Я. Трофимов, Н. А. Мамаев // Цемент и его применение. — 2013. — № 2. — С. 114–118.

12. **Репина, И. И.** Дисперсные добавки для строительных материалов на основе минеральных вяжущих / И. И. Репина, Е. А. Карпова, А. Д. Игнатьева // Вестник науки и образования Северо-Запада России. — 2015. — Т. 1, № 3. — С. 20-25.

13. **Фомина, Н. Н.** Исследование влияния комплексной добавки суперпластификатора и микрокремнезема на свойства цементных композитов / Н. Н. Фомина, И. С. Алексеенко, Д. С. Царапкин // Техническое регулирование в транспортном строительстве. — 2016. — № 1 (15). — С. 54–59.

14. **Онасенко, Ю.** А. Высокотемпературные процессы фазообразования в системе «Цемент «Gorkal-70» – микрокремнезем» / Ю. А. Онасенко, В. В. Песчанская // Технологический аудит и резервы производства. — 2013. — Том 1, № 2 (9). — С. 25-28. 15. *Страхов, В. И.* Об изменении фазового состава матриц огнеупорных бетонов системы CaO-Al₂O₃-SiO₂ при термическом воздействии / В. И. Страхов, В. В. Коржиков, Е. А. Павлова [и др.] // Огнеупоры и техническая керамика. — 2007. — № 8. — С. 3–7.

16. **Страхов, В. И.** Фазовые преобразования и свойства материалов CaO-Al₂O₃-SiO₂ при температурном и химическом воздействии / В. И. Страхов, Е. А. Павлова, Л. И. Михайлова [и др.] // Огнеупоры и техническая керамика. — 2009. — № 1/2. — С. 12–18.

17. *Hubbard, C. R.* The reference intensity ratio for computer simulated powder patterns / *C. R. Hubbard, E. H. Evans, D. K. Smith* // J. Appl. Cryst. — 1976. — Vol. 169, № 9. — P. 169–174.

Получено 09.06.17 © К. Г. Земляной, И. В. Кормина, И. А. Павлова, 2018 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

