ОГНЕУПОРЫ В ТЕПЛОВЫХ АГРЕГАТАХ

К. т. н. **М. Б. Ремизов**¹, к. т. н. **П. В. Козлов**^{1,2} (⊠), **А. А. Казадаев**¹, к. х. н. **В. П. Медведев**², **В. Л. Малинкович**³

- ¹ ФГУП «ПО «Маяк», г. Озерск Челябинской обл., Россия
- ² Озерский технологический институт (филиал ФГАОУ ВО «Национальный исследовательский ядерный университет «МИФИ»),
 - г. Озерск Челябинской обл., Россия
- ³ Glass Furnace Solutions Co., Москва, Россия

УДК 666.762.45.017:620.193.4

КОРРОЗИОННЫЕ ИСПЫТАНИЯ БАДДЕЛЕИТОКОРУНДОВЫХ И ХРОМОКСИДНЫХ МАТЕРИАЛОВ В РАСПЛАВАХ АЛЮМОФОСФАТНЫХ СТЕКОЛ

Обоснована значимость вопроса коррозионной и эрозионной стойкости огнеупорных материалов в печах прямого электрического нагрева для остекловывания высокоактивных отходов (ВАО). Приведен алгоритм оценки их устойчивости к действию фосфатных расплавов в условиях работы электропечей. Проведены сравнительные коррозионные испытания огнеупорных материалов, превосходящих по своему качеству изделия Бк-33, в расплавах алюмофосфатных стекол с имитаторами ВАО. Результаты испытаний имеют ценность для выбора материала футеровки при проектировании стекловаренных электропечей типа ЭП-500 с пролонгированным сроком службы, а также удаляемых и малогабаритных плавителей следующего поколения.

Ключевые слова: коррозия, стеклоустойчивость, бадделеитокорундовые огнеупоры, хромалюмоцирконовые огнеупоры, промышленные печи остекловывания, высокоактивные отходы (ВАО), алюмофосфатное стекло, термовискозиметрические характеристики.

ВВЕДЕНИЕ

производстве ПО «Маяк» сопровождается образованием значительного количества высокоактивных растворов, содержащих продукты деления топлива, его активации, а также конструкционные материалы. Отходы отверждаются в алюмофосфатное стекло в высокопроизводительных электропечах прямого электрического нагрева типа ЭП-500. Алюмофосфатное стекло в расплавленном состоянии обладает повышенной коррозионной активностью (в сравнении с силикатным стеклом), усиливающейся при включении ряда компонентов отходов, таких как сера, никель, железо, хром и некоторые другие.

Опыт эксплуатации стекловаренных печей свидетельствует, что срок их эксплуатации лимитируется, как правило, не общим неудовлетворительным состоянием всей огнеупорной кладки, а разрушением ограниченного числа конструктивных элементов варочного бассейна и газового пространства в зонах варки и максимальных температур [1]. Например, скорость

 \bowtie

П. В. Козлов E-mail: kozlov pavel@inbox.ru коррозии огнеупоров на уровне стекломассы может быть от 2 до 5 раз больше, чем на площади ниже зеркала стекломассы [2]. К таким элементам применительно к печам остекловывания ВАО типа ЭП-500 относятся верхний участок стен варочного бассейна, перегородка, переточная зона и порог. Существенный вклад вносит также межшовная коррозия, возникающая вследствие превышения нормативных зазоров в кладке.

В настоящее время на предприятии разрабатываются перспективные типы плавителей, имеющих принципиальные конструкционные и технологические отличия от печей типа ЭП-500 [3]. Для их создания требуется применение более коррозионно-устойчивых конструкционных материалов. На сегодняшний день в России и за рубежом проведены многочисленные лабораторные исследования стеклоустойчивости огнеупоров в целом. В то же время количество работ, направленных на изучение коррозионного воздействия расплавов стекол с включенными ВАО, специфичных для условий радиохимического производства ПО «Маяк», невелико.

Цель настоящей работы состояла в поиске наиболее устойчивых в расплавах алюмофосфатных стекол огнеупорных материалов отечественного и зарубежного производства, превосходящих по своему качеству плавленолитой бадделеитокорундовый огнеупор Бк-33 приме-

нительно к условиям отверждения ВАО. Работа была разделена на следующие этапы:

- испытание образцов ряда современных материалов с несколькими стеклообразующими составами, включающими различное содержание коррозионно-активных компонентов;
- сравнение испытанных образцов по показателям коррозионной стойкости (скорость, характер и степень коррозии);
- предварительный выбор огнеупоров с наилучшими показателями, перспективных для создания плавителей нового поколения.

ЭКСПЕРИМЕНТАЛЬНО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Для проведения исследований коррозионных и эрозионных показателей были отобраны 5 различных марок огнеупорных материалов, характеристики образцов приведены в табл. 1. Образцы представляли собой бруски квадратного сечения со стороной от 7 до 10 мм, длиной от 30 до 70 мм. Кажущуюся плотность образцов определяли объемным методом. В качестве исходной «точки отсчета» использовали плавленолитой бадделеитокорундовый огнеупор марки Бк-33 производства Щербинского завода огнеупоров, традиционно использовавшийся для футеровки печей типа ЭП-500. В качестве перспективных материалов рассматривали образцы плавленолитых бадделеитокорундовых огнеупоров марок AZS-33. AZS-36 и AZS-41 производства совместной бельгийско-китайской фирмы [4], которые по содержанию бадделеита являются аналогами отечественных огнеупоров марок Бк-33, Бк-37 и Бк-41, а также образец хромалюмоцирконового материала марки AZCS-30B того же производства с содержанием Ст₂О₃ не менее 30 %.

В качестве коррозионно-активных сред были выбраны четыре различных вида стекол, составы которых в пересчете на оксиды приведены в табл. 2. Каждый из составов стекла был приготовлен в количестве 250 г готовой стекломассы. Решение исследовать коррозию на четырех различных составах стекол преследовало двоякую цель: получить дополнительные данные о сравнительной коррозионной активности различных компонентов, содержащихся в стекломассах в неодинаковых количествах, а также выявить возможную специфическую стойкость либо уязвимость тех или иных огнеупорных образцов по отношению к определенным коррозионно-активным компонентам

Следует упомянуть один из главных факторов, определяющих коррозионную активность расплава по отношению к огнеупору, — вязкость расплава. Из-за влияния этого фактора при исследованиях стеклоустойчивости материалов с использованием расплавов, обладающих различными характеристиками зависимости вязкости от температуры (термовискозиметрическими характеристиками), возможно ошибочное заключение о коррозионной активности некоторых компонентов стекла, в действительности влияющих на вязкость расплава и лишь опосредованно на скорость коррозии в данном расплаве. Чтобы избежать подобных ошибок, разность между вязкостью расплавов необходимо учитывать. Для исключения влияния различия вязкости разных составов стекол на скорость коррозии в них полбирали такие рабочие температуры испытаний для каждого из составов, при которых их вязкость была одинакова и составляла 6,0 Пас (оптимальна для реализации технологического процесса на действующих печах типа ЭП-500). Рабочие температуры испытаний для каждого из составов стекол приведены ниже:

Состав стекла	1	2	3	4
Температура, °С	1100	970	875	925
Длительность испытаний, ч	100	100	100	100

Вязкость стекол исследовали на лабораторном вибрационном вискозиметре, работа

Таблица 2. **Составы стекол, использованных в качестве коррозионно-активных сред при испытаниях**

Оксид	Массовая доля оксида в стекле, %, состава						
ОКСИД	1	2	3	4			
P_2O_5	54	48	54	48			
B_2O_3	-	6	-	6			
Na ₂ O	23	23	23	23			
Al_2O_3	14	14	10,87	10,87			
SrO	0,09	0,09	-	-			
Y_2O_3	0,06	0,06	-	-			
ZrO ₂	0,51	0,51	_	-			
MoO ₃	1,44	1,44	-	-			
Cs ₂ O	0,34	0,34	_	-			
BaO	0,20	0,20	_	-			
La ₂ O ₃	0,44	0,44	_	-			
Ce ₂ O ₃	0,79	0,79	_	-			
MgO	1,34	1,34	_	-			
Cr ₂ O ₃	0,40	0,40	0,80	0,80			
MnO	0,10	0,10	_	-			
Fe ₂ O ₃	1,56	1,56	4,15	4,15			
NiO	0,33	0,33	3,18	3,18			
CaO	1,00	1,00	1,00	1,00			
SO ₃	0,41	0,41	3,00	3,00			

Таблица 1. Состав и свойства образцов огнеупорных материалов

Образец материала	Химический состав, %				Кажущаяся		
марки	ZrO_2	Al_2O_3	SiO ₂	Cr ₂ O ₃	Na ₂ O	другие оксиды	плотность, г/см ³
Бк-33	33,5	51,5	13,3	_	1,2	0,4	3,59
AZS-33	32-36	47,6-50,0	≤16	_	≤1,5	≤2,5	3,85
AZS-36	35-40	44,5-50,5	≤14	_	≤1,6	≤2,5	3,92
AZS-41	40-44	44-48	≤13	_	≤1,3	≤2,5	4,01
AZCS-30B	16±1	40±1	_	≥30	_	_	3,45

которого основана на зависимости амплитуды вынужденных колебаний стержня от вязкости жидкости, в которой эти колебания происходят [5]. За основу была взята методика, разработанная в Государственном институте стекла и заключающаяся в определении потери массы или объема материала в единицу времени контакта огнеупора с расплавом стекла [5, 6]. Детальную характеристику стеклоустойчивости огнеупорных материалов можно получить только при ее комплексном определении в статических и динамических условиях [7].

Испытания проводили в статических условиях путем выдержки частично погруженных в расплав стекла на глубину около 10 мм образцов в алундовых тиглях. В статическом режиме были испытаны выбранные огнеупорные материалы со всеми составами стекломасс. Испытания в динамических условиях проводили при вращении вокруг продольной вертикальной оси образцов, погруженных на глубину около 20 мм в расплав стекломассы в тигле. Частота вращения образцов, равная 60 об/мин, соответствовала скорости движения стекломассы в печи ЭП-500 (2,8 м/мин). В динамическом режиме были испытаны три образца (марок AZS-41, Бк-33 и AZCS-30B) в составе 2, содержащем оксид бора и макрокомпоненты в концентрациях, не превышающих регламентные ограничения, и которому соответствуют температурные условия, близкие к производственным.

При проведении статических испытаний определяли линейную скорость коррозии на уровне стекломассы (ν_{κ} , мм/сут) по формуле

$$v_{\rm K} = (d_{\rm cp} - d'_{\rm cp}) \cdot 24/2\tau,$$
 (1)

где d_{cp} — средняя толщина образца на уровне стекломассы до испытаний, мм; d_{cp}' — средняя

толщина образца на уровне стекломассы после испытаний, мм; т — продолжительность испытаний, ч; 2 — коэффициент, учитывающий разъедание образца с двух сторон.

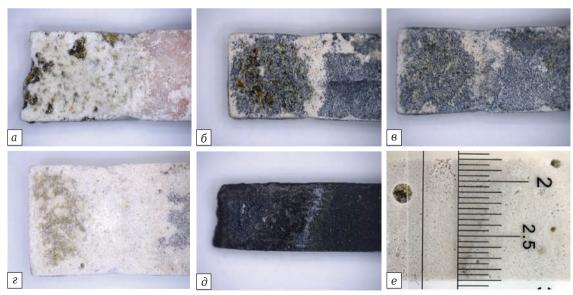
Величину объемной степени эрозии огнеупоров в динамических условиях (ΔV , об. %) определяли по изменению в процессе испытаний объема погруженной в расплав стекломассы части образца:

$$\Delta V = \frac{V - V'}{V} \cdot 100,\tag{2}$$

где V — объем погруженной части образца до испытаний, см³; V' — объем погруженной части образца после испытаний, см³;

$$V = a \cdot b \cdot h,\tag{3}$$

где a, b — стороны образца огнеупора прямоугольного сечения до испытаний, см; h — глубина погружения образца огнеупора в стекломассу, см;


$$V' = V - \frac{M_0 - M}{\rho_0},\tag{4}$$

где M_0 — масса образца до испытаний, г; M — масса образца огнеупора после испытаний, г; ρ_0 — плотность образца огнеупора до испытаний, г/см 3 .

На основании полученных данных рассчитывали индексы относительной устойчивости материала.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Макрофотографии с 10-кратным увеличением некоторых образцов, испытанных в течение 100 ч при статических условиях в составах 1–4, имеющих наибольшие коррозионные повреждения, показаны на рис. 1. Линейные скорости корро-

Рис. 1. Макрофотографии образцов огнеупоров после испытаний: a — Бк-33 в составе 2; δ — AZS-36 в составе 4; ϵ — AZS-41 в составе 4; ϵ — масштаб макрофотографий (цена деления линейки 0,5 мм)

зии, рассчитанные на основании средних толщин образца, измеренных до и после испытаний, для каждого материала, испытанного в статическом режиме в составах 1-4, а также индексы стеклоустойчивости относительно бакора-33 приведены в табл. 3. Для лучшего представления данные табл. 3 по линейной скорости коррозии показаны в виде гистограммы на рис. 2.

Из гистограммы (см. рис. 2) и табл. 3 видно, что наибольшую коррозионную устойчивость (скорость коррозии от 1,4 до 15,0 раза меньше, чем у Бк-33) проявил огнеупор AZCS-30B, наименьшую — огнеупор Бк-33. Зарубежные бадделеитокорундовые образцы заняли промежуточное положение по коррозионной стойкости и расположились в ряд в соответствии с содержа-

Таблица 3. Сравнительная коррозионная устойчивость образцов огнеупоров по экспериментальным данным в статических условиях

Образец	Средняя толщина, мм		Линейная	Индекс			
огнеупора марки	до испытаний	после испытаний	скорость, мм/сут	относительной стеклоустой- чивости			
Состав 1, температура 1100 °C							
Бк-33	9,7	8,2	0,18	1,0			
AZS-33	12,9	12,0	0,11	1,7			
AZS-36	10,5	9,8	0,08	2,1			
AZS-41	11,4	11,3	0,01	15,0			
AZCS-30B	7,1	7,0	0,01	15,0			
Состав 2, температура 970 °C							
Бк-33	11,1	10,0	0,13	1,0			
AZS-33	10,0	9,2	0,10	1,4			
AZS-36	13,3	12,8	0,06	2,2			
AZS-41	11,5	11,1	0,05	2,8			
AZCS-30B	8,4	8,3	0,01	11,0			
Состав 3, температура 875 °C							
Бк-33	10,1	9,4	0,08	1,0			
AZS-33	11,6	11,2	0,05	1,8			
AZS-36	12,3	11,9	0,05	1,8			
AZS-41	11,2	10,8	0,05	1,8			
AZCS-30B	7,8	7,3	0,06	1,4			
Состав 4, температура 925 °C							
Бк-33	11,0	9,7	0,16	1,0			
AZS-33	13,9	12,4	0,18	0,9			
AZS-36	10,7	9,6	0,13	1,2			
AZS-41	10,5	9,7	0,10	1,6			
AZCS-30B	8,2	8,2	0,00				

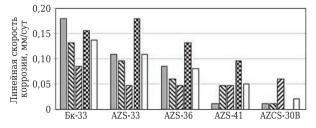


Рис. 2. Графическая интерпретация данных эксперимента по линейной скорости коррозии: ☐ — состав 1, 1100 °C; ☑ — состав 2, 970°C; ☑ — состав 3, 875 °C; ☑ — состав 4, 925 °C; ☐ — среднее значение

нием ZrO_2 . В целом в порядке возрастания средней линейной скорости коррозии исследованные материалы расположились в следующем ряду: AZCS-30B < AZS-41 < AZS-36 < AZS-33 < Бк-33. Таким образом, наибольшей коррозионной стойкостью обладают хромалюмоцирконовые огнеупоры с содержанием Cr_2O_3 от 30 %.

Более высокую коррозию огнеупора в составе 1 можно объяснить повышенной рабочей температурой испытаний, в составе 4 — большим содержанием коррозионно-активных компонентов. Состав стекла 3 проявил меньшую коррозионную активность по сравнению с составом 4, что может быть обусловлено также разницей рабочих температур — 50 °C. В целом можно заключить, что повышение температуры испытаний при одинаковой вязкости расплавов и возрастание концентраций оксидов серы, железа. хрома и никеля в стекле увеличивают скорость коррозии огнеупорных материалов. Заметного влияния оксида бора на коррозионную активность стекол не обнаружено. Эрозионное разрушение образцов после динамических испытаний в составе 2 показано на рис. 3.

В табл. 4 приведены измеренные и расчетные показатели эрозии образцов, испытанных в динамических условиях. По данным эксперимента очевидно превосходство огнеупоров AZCS-30B и AZS-41 по сравнению с огнеупором Бк-33 по степени и линейной скорости эрозионного разрушения в динамических условиях, моделирующих движение расплава в печи типа ЭП-500. В порядке возрастания объемной степени эрозии исследованные в динамическом режиме материалы расположились в следующем ряду: AZS-41 < AZCS-30B << Бк-33, а в порядке воз-

Рис. 3. Эрозия образцов огнеупоров Бк-33 (a), AZCS-30B (b) и AZS-41 (b), испытанных в динамических условиях в составе 2

9.8

0,108

3,28

1,56

Образец огнеупора марки Показатели испытания Бк-33 AZCS-30B AZS-41 Сечение образца до испытаний, см: 0,99 0,83 1,07 a_0 b_0 0,90 0,83 0,90 Толщина образца после испытаний а, мм 8.5 7.5 9.8 Глубина погружения образца h, см 2,9 1,6 2,5 Масса образца, г: 28.97 до испытаний M_0 19.79 11.18 после испытаний М 16.81 10.78 28.02 Плотность образца огнеупора до испытаний ρ_0 , г/см³ 3,59 3,45 4,01 Объемная степень эрозии огнеупора ΔV , об. % 10.3

32.1

0,168

1

1

Таблица 4. Сравнительная коррозионная и эрозионная устойчивость образцов огнеупоров в динамических условиях в составе 2 при температуре 970 °C

растания линейной скорости коррозии — в ряду: AZCS-30B < AZS-41 << Бк-33. Результаты по эрозионному динамическому разрушению согласуются с данными по скорости статической коррозии, полученными в ходе предыдущего эксперимента.

Линейная скорость эрозии огнеупора v_э, мм/сут

Индекс относительной стеклоустойчивости:

ЗАКЛЮЧЕНИЕ

πο ΔV

по у

По итогам проведенной работы можно сделать следующие выводы.

- 1. Наибольшую коррозионную устойчивость проявил образец огнеупора марки AZCS-30В, что позволяет рассматривать хромалюмоцирконовые огнеупоры с содержанием Сг₂О₃ 30 % и более в качестве перспективных для футеровки наиболее ответственных участков плавителей следующего поколения.
- Огнеупоры марок AZS-33, AZS-36 и AZS-41 – аналоги отечественных бакоров – занимают

промежуточное положение по стеклоустойчивости и могут быть использованы для умеренно нагруженных участков печей.

0,096

3 12

1.75

- 3. Показано, что применение Бк-33, как наименее коррозионно-стойкого материала, нежелательно и возможно только для наименее ответственных элементов печей остекловывания.
- 4. Повышение температуры испытаний при одинаковой вязкости расплавов и возрастание концентраций оксидов серы, железа, хрома и никеля в стекле повышают скорость коррозии огнеупорных материалов.

Результаты проведенных испытаний могут иметь ценность при выборе материала футеровки при проектировании стекловаренных электропечей типа ЭП-500 с пролонгированным сроком службы, а также удаляемых и малогабаритных плавителей нового поколения.

Библиографический список

- 1. Токарев, В. Д. Анализ службы огнеупорных материалов в ванных стекловаренных печах / В. Л. Токарев. С. С. Игнатьев, О. Н. Попов // Стекло и керамика. -2006. — № 5. — C. 19-22.
- 2. Станек, Я. Электрическая варка стекла / Я. Станек; под ред. Ю. А. Гулояна; пер. с чешского Б. С. Андрияшина. — М. : Легкая индустрия, 1979. — 248 с.
- 3. Ремизов, М. Б. Концептуальные и технические решения по созданию на ПО «Маяк» установок остекловывания текущих и накопленных жидких ВАО / М. Б. Ремизов, П. В. Козлов, М. В. Логунов [и др.] // Вопросы радиационной безопасности. — 2014. — № 3. — C. 17-25.
- 4. Проспект фирмы Zhengzhou Yuandong Refractory Co., Ltd / Wulibao Industrial Zone, Dawei, Xinmi, Henan, China.
- 5. Ремизов, М. Б. Коррозионные испытания плавленолитых огнеупорных материалов в расплавах алюмо-

фосфатных стекол / М. Б. Ремизов, А. А. Казадаев, П. В. Козлов [и др.] // Огнеупоры и техническая керамика. — 2015. — № 6. — C. 3–8.

- 6. Ремизов, М. Б. Исследование коррозионной устойчивости бадделеито-корундовых и хромалюмоцирконовых огнеупорных материалов отечественного и импортного производства в расплавах алюмоборфосфатных стекол / М. Б. Ремизов, А. А. Казадаев, П. В. Козлов [и др.] // Огнеупоры и техническая керамика. — 2016. — № 4/5. — C. 3–7.
- 7. Попов, С. А. Коррозия и служба огнеупорных материалов в ванных стекловаренных печах при высокотемпературной варке стекла: обзор / С. А. Попов. — М. : ВНИИЭСМ, 1974. ■

Получено 26.09.17 © М. Б. Ремизов, П. В. Козлов, А. А. Казадаев, В. П. Медведев, В. Л. Малинкович, 2018 г.