Д. э. н. **В. М. Рытвин**¹, д. г.-м. н. **В. А. Перепелицын**² (^[]), к. т. н. **А. А. Пономаренко**², **С. И. Гильварг**¹

 ¹ ОАО «УК «РосСпецСплав-Группа МидЮрал», г. Екатеринбург, Россия
² ФГАОУ ВО «Уральский федеральный университет», г. Екатеринбург, Россия

УДК 669.168.002.33:666.76.001.8

ТИТАНОГЛИНОЗЕМИСТЫЙ ШЛАК— ПОЛИФУНКЦИОНАЛЬНОЕ ТЕХНОГЕННОЕ СЫРЬЕ ВЫСОКОГЛИНОЗЕМИСТОГО СОСТАВА. Часть 1. Вещественный состав и свойства титаноглиноземистых шлаков

Обобщены сведения и приведены результаты комплексных исследований по вещественному составу и свойствам титаноглиноземистых шлаков. Исследования проводились на протяжении нескольких десятилетий как отечественными специалистами, так и авторами настоящей статьи. Приведены химический, минеральный составы и свойства шлаков ферротитана. Отражен опыт применения и рассмотрены перспективные направления использования шлака ферротитана.

Ключевые слова: алюминотермия, титаноглиноземистый шлак, шлак ферротитана, огнеупорные материалы, шпинель, корунд, бонит.

введение

За 70 лет производства ферротитана на Ключевском заводе ферросплавов шлак претерпел определенные изменения в химическом составе в связи с совершенствованием технологии производства и использованием новых видов минерального сырья. В настоящее время (период 2005–2016 гг.) среднее содержание главных оксидов в шлаке составляет, мас. %: Al₂O₃ 56–70, CaO 10–24, TiO₂ 8–20, MgO 2–5, FeO 0,5–3,0. Минеральный состав шлаков (табл. 1)

в основном может быть описан диаграммой состояния трехкомпонентной системы Al₂O₃-TiO₂-CaO (рис. 1), в которой имеется 8 бинарных

соединений, представленных алюминатами и титанатами кальция. В связи с недостаточной изученностью остается дискуссионным вопрос о существовании и составе тройного соединения CaO \cdot Al₂O₃ \cdot 2TiO₂ или CaO \cdot 2Al₂O₃ \cdot 3TiO₂ на разрезе CaO \cdot TiO₂ [3]. В системе установлено 7 эвтектик с температурами плавления 1347–1600 °C (табл. 2). Фигуративные точки, отражающие минеральную основу титаноглиноземистого шлака в малофлюсовый период плавки ферротитана, находятся в корундовой области, а в более позднее время — в поле бонита CaO \cdot 6Al₂O₃ (см. рис. 1).

Таблица 1. Минеральный состав шлака ферротитана, мас. %

Корунд (Al,Ti) ₂ O ₃	Бонит CaO · · 6(Al,Ti) ₂ O ₃	Диалюми- нат кальция CaAl₄O7	Оксид титана ТіО	Оксид ти- тана Ті ₂ О ₃	Рутил ТіО2	Шпинель Mg(Al,Ti) ₂ O ₄	Перовскит СаТіО ₃	Металл (ферроти- тан) FeTi	Прочие	Источ- ник
5-7	83	-	1,0	-	-	5-7	_	2–3	1-2	[1]
50-60	30-40	-	-	-	-	2-3	-	-	1-3	
									(стекло)	
5-6	72–73	7–8	-	-	6-7	-	5–7	-	-	[2]
~70	-	-	-	3,7	-	-	5,0	3,2	19,5 (стекло)	[3]
-	50-60	10-25	-	$\Sigma = 1$	-7	5-10	2-3	-	-	[4]
-	66-68	15	Σ	= 10	-	_	5-6	-	2-3	[5]
									$(Ca_3Al_2O_6)$	
-	40-55	15-20		$\Sigma = 8 - 15$		5–7	_	_	5-15 (CaAl ₂ O ₄)	[6]
-	35-40	30-35		$\Sigma = 4-6$		8-10	15-20	0,5	8-10	[7]
									$(12CaO \cdot 7Al_2O_3)$	

⊠ В. А. Перепелицын E-mail: pva-vostio@bk.ru Как известно, диаграммы состояния систем неорганических веществ отражают исключительно равновесный фазовый состав материалов, что далеко не всегда соответствует реальному минеральному составу, так как равновесное состояние

Форт	Произос	C	Температура,		
Фазы	процесс	CaO	Al ₂ O ₃	TiO ₂	°C
$CaO + 3CaO \cdot 2TiO_2 + 3CaO \cdot Al_2O_3 + жидкость$	Перитектика	57,0	33,5	9,5	1462
$3CaO \cdot 2TiO_2 + 3CaO \cdot Al_2O_3 + CaO \cdot TiO_2 + жидкость$	»	53,5	39,5	7,0	1432
$3CaO \cdot Al_2O_3 + CaO \cdot TiO_2 + 12CaO \cdot 7Al_2O_3 + жидкость$	Эвтектика	50,0	45,5	4,5	1369
$CaO \cdot TiO_2 + 12CaO \cdot 7Al_2O_3 + CaO \cdot Al_2O_3 + жидкость$	»	47,0	49,0	4,0	1368
$CaO \cdot TiO_2 + CaO \cdot Al_2O_3 + CaO \cdot 2Al_2O_3 + жидкость$	»	36,5	52,5	11,0	1534
$CaO \cdot TiO_2 + CaO \cdot 2Al_2O_3 + CaO \cdot 6Al_2O_3 + жидкость$	Перитектика	24,0	41,0	35,0	1558,5
$CaO \cdot TiO_2 + CaO \cdot 6Al_2O_3 + Al_2O_3 + жидкость$	»	20,0	24,0	56,0	1476,5
$CaO \cdot TiO_2 + Al_2O_3 + Al_2O_3 \cdot TiO_2 + жидкость$	»	18,0	20,0	62,0	1435
$CaO \cdot TiO_2 + Al_2O_3 \cdot TiO_2 + TiO_2 + жидкость$	Эвтектика	19,0	13,0	68,0	1390
$CaO \cdot TiO_2 + 12CaO \cdot 7Al_2O_3 + жидкость$	»	46,5	49,5	4,0	1380
$CaO \cdot TiO_2 + CaO \cdot Al_2O_3 + жидкость$	»	36,5	52,5	11,0	1534
$CaO \cdot TiO_2 + CaO \cdot 2Al_2O_3 + жидкость$	»	30,5	45,5	24,0	1600

Таблица 2. Инвариантные точки системы CaO-Al₂O₃-TiO₂ [8]

фаз в оксидных и силикатных системах тугоплавких веществ часто не достигается по ряду причин: недостаточной дисперсности материалов или длительности твердофазного синтеза, инконгруэнтного характера плавления сложных соединений и др.

Главными минералами в малофлюсовых шлаках являются корунд (Al, Ti)₂O₃ (точнее, твердый раствор — сапфир) и свободные оксиды титана Ti₂O₃, TiO, TiO₂ с явным преобладанием первого. В небольшом количестве содержится титановый бонит CaO · 6 (Al, Ti)₂O₃. В шлаках второго (полнофлюсового) периода производства ферротитана, наоборот, преобладает такой же бонит, а корунд отсутствует совсем или имеется в незначительном количестве (до 5 %). В этом случае первично кристаллизующимся минералом является титаносодержащий бонит. При содержании СаО более 9 мас. % в современных шлаках совместно с бонитом имеются более основные алюминаты кальция $CaO \cdot 2Al_2O_3$ и $CaO \cdot Al_2O_3$. Наконец, при содержании СаО более 20 мас. % наряду с последними бинарными соединениями образуется майенит 12СаО · 7Аl₂O₃.

Рис. 1. Диаграмма состояния (поверхность ликвидуса) системы CaO-Al₂O₃-TiO₂ [8]; - - - перовскитовые твердые растворы

На основании более детального физикохимического изучения систем CaO-Al₂O₃-TiO₂, CaO-Al₂O₃-Ti₂O₃, Ti-TiO₂, Ti-C-N, Na₂O-CaO-Al₂O₃-SiO₂ и др., а также дополнительных пе-

U FRADULIA CDAUCTDA MUUANARAD	THTSUAF RUUASANNETLIN III RSVAD
и гларпые сроистра мипералор	питапоглипоземистых шлаков

Минорон	C	одержан	ие (теор	ретичес	кое), ма	c. %	Томпоро	Тве	рдость	Vunnunooruo	
(соединение)	CaO	CaO Al ₂ O ₃ MgO Si		SiO ₂	D_2 TiO ₂ Na ₂ O + K ₂ O		тура, °С	по Моосу	абсолютная, 10² МПа	свойства	
Al ₂ O ₃ *	-	100	-	-	-	-	2050	9,0	206-243	Нерастворим в	
										кислотах	
CaO·6Al ₂ O ₃ *	8,4	91,6	-	-	-	-	1850	8,0	150-180	Гидравлически	
										инертен	
CaO·2Al ₂ O ₃	21,5	78,5	-	-	-	-	1770	6,5	85-90	Гидратируется	
_										медленно	
CaO·Al ₂ O ₃	35,4	64,6	-	-	-	-	1600	5,0	55–60	Гидратируется	
										быстро	
12CaO·7Al ₂ O ₃	48,5	51,5	-	-	-	-	1450	4,0–4,5	40-45	Высокая скорость	
										гидратации	
MgO·Al ₂ O ₃ *	-	71,6	28,4	-	-	-	2135	8,0	150-180	Инертна ко всем	
										кислотам	
CaTiO ₃	40,5	-	-	-	59,4	-	1970	5,5–6,0	70-80	Растворим в	
										кислотах при на-	
					100		1000	.		гревании	
TiO	-	-	-	-	100	-	1890	6,0-6,5	80-90	Нерастворим в	
-										кислотах	
Ti_2O_3	-	-	-	-	100	-	1750	6,0-6,5	80-90	То же	
TiO ₂	-	-	-	-	100	-	1800	6,0–6,5	80-90	» »	
* Минералы в тве	ердом ра	створе с	одержа	г изомо	рфную п	римесь Ті	$_{2}O_{3}.$				

трографических и рентгенофазовых анализов в настоящее время в ферротитановых алюминотермических шлаках известно около 20 минералов (соединений) различных классов: элементы (Ti, Fe, Fe_xTi_{1-x}), простые оксиды (TiO, Ti₂O₃, Ti₃O₅, TiO_2 , Al_2O_3), сложные оксиды (MqAl_2O_4, CaO \cdot 6Al_2O_3, CaO · 2Al₂O₃, CaO · Al₂O₃, 12CaO · 7Al₂O₃, CaTiO₃, $Al_2O_3 \cdot TiO_2$, CaO $\cdot Ti_2O_3$, Na₂O $\cdot 11Al_2O_3$), нитриды (TiN, AlN), сульфиды (CaS) и силикаты (2CaO · \cdot Al₂O₃ \cdot SiO₂, 2CaO \cdot MgO \cdot 2SiO₂, стеклофаза). Химический состав и главные физико-химические свойства наиболее распространенных минералов приведены в табл. З. Минеральный состав шлаков варьируется в широких пределах как в качественном, так и в количественном соотношении. Наиболее глубокие исследования бесфлюсовых шлаков выполнены Д. С. Белянкиным, В. В. Лапиным и другими [9], а более известковистых шлаков — А. В. Горохом и Л. Н. Русаковым [10].

Последние, в частности, в этих и других алюминотермических шлаках выявили весьма широкое развитие процессов распада низших оксидов титана, хрома, ниобия и циркония с образованием металла и высшего оксида. Распад (диспропорционирование) происходит при охлаждении шлака с формированием характерных эмульсионных микроструктур (рис. 2, 3). Распад низших оксидов титана происходит необратимо по реакциям 2TiO → Ti + TiO₂, 2Ti₂O₃ → Ti + 3TiO₂.

На рис. 2 показана типичная микроструктура современного титаноглиноземистого шлака, состоящего из титанистого бонита (>50 %), тройного соединения CaO · Al₂O₃ · nTiO₂ (~20 %), TiO (~10 %), шпинели Mg[Al,Ti]₂O₄ и металлической фазы (образец I). Микроструктура образца *II* (см. рис. 3) характеризуется более сложным минеральным составом, представленным титаносодержащими минералами (перовскит, бонит, шпинель, CaO ·

$ \begin{array}{ c c c c c c } \hline 1 & - \mbox{ Te. pactbop} & 2 & - \mbox{ CaO} \cdot 2\mbox{ Al}_2\mbox{ O}_3 & + & & & & \\ \hline CaO \cdot 6\mbox{ Al}_2\mbox{ O}_3 & + & & & & \\ \hline CaO \cdot TiO_2 \ (30 - 35 \ \%) & & & & & \\ \hline \end{array} $		3 – тв. раствор CaO · Al ₂ O ₃ · <i>n</i> TiO ₂ (10 %)		4 – MgAl ₂ O ₄ (2–3 %)		5 – CaO · TiO ₂ (15 %)		$6 - 2CaO \cdot Al_2O_3 \cdot SiO_2 (3-5\%)$			7 – интерметал- лид (сплав)									
Oksi	Wt, %	At, %	Oksi	Wt, %	At, %	Oksi	Wt, %	At, %	Oksi	Wt,%	At, %	Oksi	Wt, %	At, %	Oksi	Wt, %	At, %	Elem	Wt, %	At, %
MgO	3,00	6,60	MgO	0,89	1,87	MgO	3,37	6,60	MgO	26,38	46,85	MgO	0,27	0,45	MgO	1,36	2,33	0	12,31	28,60
Al_2O_3	77,49	67,46	Al_2O_3	74,36	61,65	Al_2O_3	40,04	30,96	Al_2O_3	67,70	47,55	Al_2O_3	3,10	2,07	Al_2O_3	37,61	25,37	Si	9,93	13,14
CaO	9,06	14,33	CaO	22,94	34,57	CaO	15,77	22,17	CaO	0,77	0,98	CaO	42,49	51,45	SiO ₂	16,11	18,44	Ca	9,45	8,76
TiO ₂	10,45	11,61	TiO ₂	1,81	1,91	TiO ₂	40,81	40,27	TiO_2	5,16	4,62	TiO ₂	54,15	46,03	CaO	41,55	50,96	Ti	12,49	9,69
															TiO_2	3,37	2,90	Cr	54,08	38,65
																		Fe	1,73	1,15

Рис. 2. Микроструктура образца *I*. РЭМ. Детектор BSE; *a* — ×300; *б* — ×1000

2 – тв. раст	вор CaO · Al ₂ O ₃ · r	1TiO2 (20 %)	3 – тв. раствор	$O CaO \cdot 6Al_2O_3 + C$	aO·TiO ₂ (65 %)	4 – MgAl2O4 (5 %)				
Oksi	Wt, %	At, %	Oksi	Wt, %	At, %	Oksi	Wt, %	At, %		
MgO	2,37	4,74	MgO	2,54	5,66	MgO	26,11	46,62		
Al_2O_3	41,77	33,09	Al_2O_3	77,80	68,44	Al_2O_3	68,08	48,06		
CaO	13,26	19,10	CaO	8,05	12,88	CaO	0,22	0,28		
TiO ₂	42,61	43,07	TiO ₂	11,60	13,02	TiO ₂	5,59	5,03		

Рис. 3. Микроструктура образца II. РЭМ. Детектор BSE. ×100

· Al₂O₃ · nTiO₂), CaO · 2Al₂O₃, геленитом 2CaO · Al₂O₃ · · SiO₂ и интерметаллидом (сплав). Химический состав всех фаз, показанных на рис. 2 и 3, определен с использованием анализатора «Philips».

Таким образом, в современных шлаках нашими исследованиями подтверждено существование тройного соединения CaO · Al₂O₃ · nTiO₂, которое ранее было найдено в технических продуктах под названием аносовита [11]. Что касается состава аносовита, то его формула, по данным разных исследователей, неодинакова: твердый раствор на основе двух-, трех- и четырехвалентного титана [12], CaO · 2Al₂O₃ · 3TiO₂, CaO · 2Al₂O₃ · 1,5Ti₂O₃ до CaO · 1,3Al₂O₃ · 0,77Ti₂O₃ [13]. Следовательно, фазовый состав титаноглиноземистых шлаков фактически описывается сложной неизученной системой RO-Al₂O₃-TiO-Ti₂O₃-TiO₂ (RO — CaO, MgO) и требует дальнейшего исследования с применением современных методов анализа.

К числу важнейших физических свойств технического камня, используемого в качестве минерального сырья для производства неметаллических материалов, относятся кажущаяся плотность (объемный вес), открытая пористость, закрытая пористость, твердость, прочность, температура плавления (огнеупорность), поведение при нагревании в различных газовых средах, ТКЛР и др.

По данным Долкарта [14], малоизвестковые титаноглиноземистые шлаки 1950-х годов имели следующие свойства: огнеупорность 1620–1800 °С, открытая пористость (в кусках) 5,5–22,7 %, объем-

ный вес 2,92–3,19 г/см³, удельный вес ~ 3,8 г/см³, твердость (по Моосу) до 9,0. По данным *Брона* и *Бичуриной* [15], эти шлаки в 1959 г. имели следующие свойства: открытая пористость 8,2 %, объемный вес 3,28 г/см³, удельный вес 3,584 г/см³, огнеупорность 1820 °C.

Поданным Восточного института огнеупоров, шлаки производства ферротитана в 1980–1985 гг. имели следующие свойства: открытая пористость 6,1–17,3 %, кажущаяся плотность 2,89–3,20 г/см³, истинная плотность 3,56–3,71 г/см³, твердость (по Моосу) 8,5–9,0, огнеупорность 1550–1600 °С, ТКЛР 10,1 · 10⁻⁶–11,3 · 10⁻⁶ град⁻¹. Сравнение свойств шлаков текущего производства с отвальными 50-летней давности показало, что последние имеют более высокую огнеупорность из-за пониженного содержания СаО. Это согласуется с диаграммой состояния системы СаО–Al₂O₃–TiO₂ (см. рис. 1).

Физико-химические свойства современных шлаков производства ферротитана, определенные в ГНЦ «Уральский институт металлов», следующие: истинная плотность 3,08 г/см³, кажущаяся плотность 2,93 г/см³, насыпная плотность (фракция 10–70 мм) 1420 кг/м³, предел прочности при сжатии в цилиндре в сухом состоянии марка 100 МПа, влажность 1,03 %, абразивность (по методике ВНИИстройдормаша) X–XI категории, водопоглощение 1,8 %.

Одним из наиболее важных свойств сырьевых огнеупорных материалов (особенно техногенных)

Таблица 4. Изменения минерального состава титаноглиноземистого шлака при обжиге в окислительной среде [16]

Температура	Изменения минерального состава шлака по данным анализа										
обжига шлака, °С	петрографического	рентгенофазового									
Необожженный	Образец состоит из призматических кристаллов CA ₆ *1, зерен	Рентгенограммы содержат линии СА ₆ , корун-									
шлак	корунда, низших оксидов титана и небольшого количества	да, рутила (на снимках показаны все линии									
	стекловидного вещества. Зерна корунда обладают плеохро-	этих минералов сильной и средней интенсив-									
	измом (N_0 от 1,770 до 1,782, N_e = 1,770÷1,767)*2 благодаря	ности). О наличии Ti ₂ O ₃ судить затруднитель-									
	образованию твердых растворов Ti ₂ O ₃	но ввиду совпадения его линий с линиями									
		вышеуказанных минералов									
600	Изменений не наблюдается	Изменений не наблюдается									
800	Многие кристаллы СА6 и корунда приобретают зональное	» » »									
	строение. Центральная часть их окрашена твердым раствором										
	Ti ₂ O ₃ в голубой цвет, периферическая часть светлая. В освет-										
	ленной зоне кристаллов наблюдается появление мельчайших										
	(1–2 мкм) буроватых зерен TiO ₂ . Встречаются также самостоя-										
	тельные скопления тонкодисперсного ТіО ₂										
1100	Кристаллы корунда и СА6 становятся бесцветными, но не-	» » »									
	которые из них все же сохраняют повышенный показатель										
	преломления. TiO ₂ в виде включений в корунде и обособлен-										
	ных скоплениях. Присутствует буроватое стекло										
1400	Основную массу образца составляют короткопризматические	Рентгенограммы содержат линии Al ₂ TiO ₅									
	кристаллы и изометрические зерна $\mathrm{Al}_2\mathrm{TiO}_5$ размерами от	(имеются линии сильной, средней и слабой									
	10 × 10 до 10 × 20 мкм. Кристаллы обладают прямым угаса-	интенсивности), корунда и СА6 в небольшом									
	нием, знак главной зоны отрицательный, $N_g = 2,04$, $N_p = 2,01$.	количестве									
	В небольшом количестве наблюдаются корунд с нормальны-										
	ми оптическими константами, тонкодисперсные скопления										
	ТіО ₂ и частицы стекловидного вещества										
1600	Сходен с предыдущими, но кристаллы Al ₂ TiO ₅ несколько	Сходны с предыдущими. Возможно наличие									
	крупнее (10 × 70 мкм)	MgTi ₂ O ₅ (линия $d/n = 2,73$)									
*1 CA ₆ — гексаали	оминат кальция CaO · 6Al ₂ O ₃ .										
* ² Кристаллы СА ₆	в большинстве случаев весьма близки по оптическим свой	ствам к корунду.									

Рис. 4. Кривые линейного термического расширения *l* образцов, вырезанных из кусков титаноглиноземистого шлака необожженного (*I*, *II*) и обожженного (*O*)

Рис. 5. Кривые линейного термического расширения *l* прессованных образцов из тонкомолотого шлака (<0,09 мм) *I*, *II* и *O* (см. рис. 4)

является показатель объемопостоянства, характеризующий стабильность объема вещества при нагревании до температуры плавления. Как известно, все металлургические шлаки содержат включения металлической фазы, окисление которой при обжиге в воздушной среде сопровождается значительным (120–210 %) увеличением объема. Прирост объема вызывает иногда значительные внутренние структурные напряжения, обусловливающие снижение механической прочности вплоть до полного разрушения образца. Ситуация может усугубиться, если в шлаке дополнительно имеются низшие оксиды переходных металлов: FeO, TiO, Ti₂O₃, CrO и др. Именно такое сочетание окисляющихся фаз, представленных включениями металлического сплава и низших оксидов, имеют титаноглиноземистые шлаки.

Первые исследования термических превращений малоизвесткового титаноглиноземистого шлака выполнены в УкрНИИО в 1950-х годах [16]. Для изучения применяли шлак следующего состава, мас. %: SiO₂ 2,82, TiO₂ 19,15, Al₂O₃ 69,56, Fe₂O₃ 0,49, CaO 4,40, MgO 5,22, R₂O 0,36; $\Delta m_{\rm npk}$ 1,36. Термообработку шлака проводили в окислительной среде до 1600 °C с 2-ч выдержкой при 600, 800, 1100, 1400 и 1600 °C. Фазово-структурные превращения изучали с применением петрографического и рентгенофазового анализов (табл. 4). Под микроскопом заметные изменения минерального состава в шлаке наблюдаются после его нагревания при 800 °C.

Резкое изменение отмечается в результате образования титаната алюминия после обжига при 1400 °С и выше. Изменение минерального состава сопровождается сменой исходной черной окраски на светло-желтую вследствие окисления низших оксидов до рутила TiO₂. Истинная плотность шлака заметно практически не меняется. Пористость кусков шлака после обжига при 1600 °С увеличивается в 2 и более раз.

В это же время изучено изменение физических свойств шлака при нагревании в окислительной и восстановительной среде [14]. Были определены изменения объема, пористости и кажущейся плотности шлака при нагревании до 1400 °С. Кривые линейного термического расширения отдельных образцов, вырезанных из кусков шлака (рис. 4, табл. 5), сходны и различаются лишь в абсолютных значениях величин расширения при температурах выше 500 °C. Весьма различающиеся абсолютные значения линейного термического расширения образцов шлака и их остаточного роста следует объяснить неоднородностью микроструктуры титаноглиноземистых шлаков. Заметно отличаются от показанных на рис. 4 кривые линейного термического расширения прессованных образцов из тонкомолотого шлака. При 400-500 °С наблюдается аномальное расширение необожженных прессованных образцов из шлака (рис. 5).

В табл. 5 приведены данные, показывающие изменение свойств шлака при нагревании с доступом

Покорололи	Условный номер	Необожженные	Образцы шлака после обжига при					
Показатели	образца	образцы	800 °C	1100 °C	1400 °C			
Прирост массы, %	1	_	0,5	1,2	_			
	2	-	0,6	1,1	-			
	3	-	0,4	0,7	1,8			
Увеличение объема, %	1	-	0,6	1,5	7,2			
	2	-	0,9	1,2	5,0			
Открытая пористость, %	1	18,5	17,7	17,7	21,6			
	2	17,5	17,2	16,6	18,9			
Кажущаяся плотность, г/см ³	1	3,1	3,1	3,1	2,9			
	2	3,18	3,18	3,18	3,05			

Таблица 5. Изменения массы, объема и плотности образцов шлака

воздуха. При нагревании (обжиге) в восстановительной среде особых изменений минерального состава исходного шлака не наблюдается. Ранее обожженные при доступе воздуха образцы шлака при обжиге в восстановительной среде вновь приобретают темную окраску и их минеральный состав после этого подобен составу исходного материала. Свойства шлака в значительной мере объясняются способностью входящего в его состав титана менять свою валентность и вступать во взаимодействие с глиноземом или оксидом кальция в зависимости от условий (атмосферы, среды) обжига материала.

В 1960 г. в УкрНИИО дополнительно изучали причины и физико-химический механизм рассыпания титаноглиноземистого шлака, полученного с Ключевского завода ферросплавов [2]. Объекты исследования представляли собой крупные (50–100 мм) куски черного цвета, пронизанные светлыми тонкими прожилками, разбивающими образцы на фрагменты размерами 1–3 мм. При легком нажиме образцы рассыпались на мелкие обломки. В целом, анализируя все публикации сотрудников УкрНИ-

Библиографический список

1. **Пирогов, А. А.** О применении высокоглиноземистых шлаков в качестве расширяющихся заполнителей в магнезиальных бетонах / А. А. Пирогов, Е. Н. Леве, П. Д. Пятикоп // Сборник научных трудов УкрНИИО. Вып. 4. — Харьков : Металлургиздат, 1960. — С. 257–265.

2. **Гулько, Н. В.** О причинах рассыпания титаноглиноземистого шлака / *Н. В. Гулько* // Сборник научных трудов УкрНИИО. Вып. 5. — Харьков : Металлургиздат, 1961. — С. 299–302.

3. **Подногин, А. К.** О минеральном составе шлака алюминотермической плавки ферротитана / А. К. Подногин, С. И. Сучильников, Р. С. Шкляр // Труды 2-го Уральского петрограф. совещ. «Петрография огнеупоров, шлаков и синтетических минералов». — 1968. — Т. 7. — С. 112–115.

4. **Русаков, Л. Н.** О составе продуктов распада в шлаках от выплавки сплавов хрома, титана, ниобия и циркония / Л. Н. Русаков, А. С. Дубровин, Н. П. Лякишев // Изв. АН СССР. Серия «Металлы». — 1972. — № 2. — С. 31–35.

5. **Донец, И. Г.** Исследование фазового состава шлака ферротитанового производства / И. Г. Донец, Н. М. Пархоменко, И. Е. Кирьякова // Огнеупоры. — 1984. — № 11. — С. 15–18.

Donets, I. G. A study of the phase composition of the slag from ferrotitanium production / I. G. Donets, N. M. Parkhomenko, I. E. Kir'yakova // Refractories. — 1984. — Vol. 25, \mathbb{N} 11. — P. 630–632.

6. Бежаев, В. М. Особенности кристаллизации титаноглиноземистого шлака / В. М. Бежаев, В. А. Перепелицын, Ю. И. Савченко // Сборник «Минералогия и минерально-сырьевые комплексы Урала». — Екатеринбург : УрО АН СССР, 1988. — С. 69–77.

7. **Перепелицын, В. А.** Вещественный состав и свойства главных разновидностей шлаков ОАО «Ключевский завод ферросплавов» / В. А. Перепелицын, В. М. Рытвин, И. В. Кормина, В. Г. Игнатенко // Новые огнеупоры. — 2006. — № 9. — С. 15–20.

8. Барзакоеский, В. П. Диаграммы состояния силикатных систем : справочник. Вып. 4. Тройные окисные ИО и результаты собственных исследований, можно прийти к заключению, что процесс окислительного обжига шлака сопровождается следующими химическими реакциями: Ti + $0,5O_2 \rightarrow TiO, 2TiO + 0,5O_2 \rightarrow Ti_2O_3, Ti_2O_3 + 0,5O_2 \rightarrow 2TiO_2, TiO_2 + Al_2O_3 \rightarrow Al_2O_3 \cdot TiO_2$. Последняя реакция проходит только при наличии корунда, не связанного в алюминаты и силикаты. Таким образом, описанные особенности термического поведения титаноглиноземистого шлака обязательно должны быть приняты во внимание при применении его в качестве сырья для изготовления огнеупоров и керамики.

Положительным качеством титаноглиноземистого шлака является отсутствие каких-либо фазово-структурных и объемных изменений при термообработке в восстановительной (С, СО, Н₂) и нейтральной (N₂, Ar, He) газовых средах. Это свойство позволяет использовать титаноглиноземистый шлак в качестве полноценного сырья для производства новых шлакоуглеродистых (шлакографитовых) высокостойких огнеупоров для черной и цветной металлургии.

системы / В. П. Барзаковский, В. В. Лапин, А. И. Бойкова, Н. Н. Курцева. — Л. : Наука, 1974. — 514 с.

9. *Лапин, В. В.* К минералогии высокотитанистых шлаков / *В. В. Лапин, Н. Н. Курцева, О. П. Острогорская* // Труды 5-го совещания по экспериментальной и технической минералогии и петрографии. — М. : Изд-во АН СССР, 1958. — С. 123.

10. *Горох, А. В.* Петрографический анализ процессов в металлургии / *А. В. Горох, Л. Н. Русаков.* — М. : Металлургия, 1973. — 288 с.

11. **Филоненко, Н. Е.** Петрография искусственных абразивов / Н. Е. Филоненко, И. В. Лавров. — М. – Л. : Машгиз, 1953. — 93 с.

12. **Гармата, В. А.** Металлургия титана / В. А. Гармата, Б. С. Гуляницкий, В. Ю. Крамник [и др.]. — М. : Металлургия, 1968. — 310 с.

13. Залдат, Г. И. Особенности фазообразования в высокоглиноземистых шлаках от выплавки ферротитана / Г. И. Залдат, М. С. Куприянова, А. С. Дубровин // Сб. научных трудов ин-та «УралНИИстромпроект» «Переработка отходов промышленности в строительные материалы и изделия». — Челябинск, 1989. — С. 4–15.

14. Долкарт Ф. З. О применении титаноглиноземистых шлаков для изготовления огнеупоров / Ф. З. Долкарт // Огнеупоры. — 1957. — № 7. — С. 300-305.

15. **Брон, В.** А. Об использовании шлаков ферросплавов для производства высокоглиноземистых огнеупоров / В. А. Брон, А. А. Бичурина // Огнеупоры. — 1959. — № 5. — С. 216-230.

16. Долкарт, Ф. З. Изменения минералогического состава титаноглиноземистого шлака при нагревании / Ф. З. Долкарт, Н. В. Гулько // Докл. АН СССР. — 1954. — Т. XCVIII, № 1. — С. 137–139.

> Получено 12.12.16 © В. М. Рытвин, В. А. Перепелицын, С. И. Гильварг, 2017 г.