Д. т. н. В. В. Кузин (🖾), к. т. н. М. Ю. Фёдоров, к. т. н. М. А. Волосова

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

УДК 621.778.1.073:666.3]:669.018.25

ТРАНСФОРМАЦИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ ПОВЕРХНОСТНОГО СЛОЯ НИТРИДНОЙ КЕРАМИКИ ПРИ ИЗМЕНЕНИИ ТОЛЩИНЫ ТІС-ПОКРЫТИЯ. ВАРИАНТ НАГРУЖЕНИЯ — ТЕПЛОВОЙ ПОТОК

Изучено влияние толщины покрытия из карбида титана на трансформацию напряженного состояния поверхностного слоя Si₃N₄-TiC-Y₂O₃-керамики под действием теплового потока. В результате численных экспериментов установлено, что увеличение толщины TiC-покрытия с 5 до 15 мкм, нанесенного на нитридную керамику, приводит к уменьшению температуры керамики, возрастанию σ₁₁, σ₂₂, σ₁₂ и σ_i и показателей их структурной неоднородности в поверхностном слое керамики.

Ключевые слова: нитридная керамика, покрытие, структурная неоднородность напряжений, тепловой поток, поверхностный слой.

введение

ехнический прогресс в сфере изделий для высокотемпературного применения во многом зависит от успехов в создании новых керамических материалов многофункционального назначения [1-3]. Комплекс свойств керамики на основе нитрида кремния обеспечивает ее эффективное применение в горячих зонах двигателей и энергоустановок, а также соплах, горелках и инструментах [4-6]. При этом не только уменьшается износ этих конструктивных элементов и инструментов, но и интенсифицируются условия их эксплуатации [7-10]. Дополнительные преимущества нитридной керамике предоставляют покрытия со специальными свойствами, наносимые на рабочие поверхности деталей и инструментов [11, 12]. Эти преимущества базируются на совокупности физических эффектов, которые подробно проанализированы в работе [13].

Однако интуитивное понимание этих положительных эффектов оказывается недостаточным при создании инновационных керамических деталей и инструментов. Разработчикам новой техники необходимы более глубокие знания о сложных процессах, протекающих в нитридной керамике с покрытием при высоких температурах [14]. Особенно актуальны сведения о тепловом и напряженном состоянии поверхностного слоя керамики системы керамика

> ⊠ B. B. Кузин E-mail: kyzena@post.ru

– покрытие [15–17]. Однако выявление взаимосвязей в этой системе довольно сложная задача из-за существенного влияния многочисленных факторов на ее состояние [18, 19]. Частично задача решена в работах [20, 21]. Однако за рамками этих исследований остался вопрос влияния толщины покрытия на напряженное состояние керамики.

В данной работе поставлена цель — исследовать трансформацию напряженного состояния поверхностного слоя керамики на основе нитрида кремния, находящейся под действием теплового потока, при изменении толщины TiCпокрытия. Настоящая статья является продолжением работ [22, 23].

МЕТОДИКА ИССЛЕДОВАНИЯ

При выполнении численных экспериментов использовали расчетную схему и методику, приведенные в работе [22]. Исследовали керамику системы Si_3N_4 -TiC- Y_2O_3 с покрытием TiC толщиной 5, 10 и 15 мкм. К поверхности покрытия прикладывали тепловой поток Q = 3·10⁷ Вт/м², а с поверхности, свободной от теплового потока, осуществляли теплоотвод с коэффициентом *h* = = 10⁵ Вт/(м²·град). Определяли напряжения σ₁₁, σ₂₂, σ₁₂, и интенсивность напряжений σ_i в поверхностном слое основных структурных элементов керамики — зерна (3), межзеренной фазы, примыкающей к зерну (МФЗ), межзеренной фазы, примыкающей к матрице (МФМ), и поверхности матрицы, примыкающей к межзеренной фазе (М). Использовали метод контрольных точек (KT), которые были расположены на этих поверхностях [24]. Структурную неоднородность напряжений в поверхностном слое элементов

керамики характери- T, °С зовали следующими 1100 показателями: наибольшее $\sigma_{\text{макс}}$, наименьшее $\sigma_{\text{мин}}$ и средиее $\sigma_{\text{ср}}$ значения, диапазон изменения 800 Σ , стандартное отклонение s и число T, °С N изменений знака 1100 для σ_{11} , σ_{22} , σ_{12} и σ_i .

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Влияние толщины ТіС-покрытия на температуры, формирующиеся в КТ

Рис. 1. Влияние толщины TiC-покрытия на температуру *T* в поверхностных слоях 3 (*a*), МФЗ (*б*), МФМ (*в*) и М (*г*) в Si₃N₄-TiC-Y₂O₃-керамике; Δ_{π} указана на кривых, мкм

поверхностей 3, МФ3, МФМ и М под действием теплового потока $Q = 3 \cdot 10^7$ Вт/м², показано на рис. 1. Видно, что с увеличением толщины покрытия от 5 до 15 мкм температура в поверхностном слое керамики заметно уменьшается. Например, ее максимальные значения $T_{\text{макс}}$ в поверхностном слое 3 (рис. 1, *a*), МФ3 (рис. 1, *б*), МФМ (рис. 1, *в*) и М (рис. 1, *г*) уменьшаются с 1125 до 921 °С, с 1116 до 914 °С, 1115 до 912 °С и 1113 до 911 °С соответственно при увеличении толщины покрытия Δ_{π} от 5 до 15 мкм.

Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностном слое 3 под действием теплового потока $Q = 3 \cdot 10^7$ Вт/м² показаны на рис. 2. Установлено, что напряжения σ_{11} при $\Delta_n = 5$ мкм изменяются в диапазоне 252 МПа — от 3 (КТ24) до -249 МПа (КТ13) при $\sigma_{cp} = -146$ МПа, s = 91 МПа и N = 1 (рис. 2, *a*). При $\Delta_n = 10$ мкм образуются σ_{11} , изменяющиеся в диапазоне 268 МПа — от -16 (КТ23) до -284 МПа (КТ16) при $\sigma_{cp} = -162$ МПа, s = 95 МПа и N = 0. При $\Delta_n = 15$ мкм формируются σ_{11} с диапазоном изменения 276

M $\sigma_{cp} = -91$ MПа, s = 92 МПа и N = 2. При $\Delta_{\pi} =$ = 15 мкм образуются σ_{22} , изменяющиеся в диапазоне 316 МПа — от 43 (КТ17) до -273 MПа (КТ4) при $\sigma_{cp} = -80$ МПа, s = 99 МПа и A. N = 3. B Напряжения σ_{12} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 129 МПа — от -55 (КТ4) до -184 МПа

в диапазоне 129 МПа — от -55 (КТ4) до -184 МПа (КТ18) при $\sigma_{cp} = -96$ МПа, s = 31 МПа и N = 0 (рис. 2, e). При $\Delta_{\pi} = 10$ мкм образуются σ_{12} , изменяющиеся в диапазоне 123 МПа — от -118 (КТ5) до -241 МПа (КТ18) при $\sigma_{cp} = -156$ МПа, s = 28 МПа и N = 0. При $\Delta_{\pi} = 15$ мкм формируются σ_{12} , которые изменяются в диапазоне 161 МПа — от -147 (КТ6) до -308 МПа (КТ18) при $\sigma_{cp} = -198$ МПа, s = 38МПа и N = 0.

Интенсивность напряжений σ_i при $\Delta_{\pi} = 5$ мкм изменяется в диапазоне 219 МПа — от 96 (КТ23) до 315 МПа (КТ18) при $\sigma_{cp} = 226$ МПа, s == 69 МПа (рис. 2, *г*). При $\Delta_{\pi} = 10$ мкм диапазон изменения σ_i составляет 264 МПа — от 209 (КТ23) до 473 МПа (КТ18) при $\sigma_{cp} = 327$ МПа, s == 65 МПа. При $\Delta_{\pi} = 15$ мкм σ_i изменяется в ди-

 $M\Pi a$ — от -3 (КТ23) до -279 МПа (КТ16) при σ_{cp} = -152 МПа, s = 98 МПа и N = 0.

Напряжения σ₂₂ при Δ_{π} = 5 мкм изменяются в диапазоне 260 МПа — от 26 (КТ19) до -234 МПа (КТ4) при σ_{ср} = = -87 MIIa, s = 82МПа и N = 2 (рис. 2, б). При Δ_{π} = 10 мкм в поверхностном слое зерна формируются σ₂₂ с диапазоном изменения 290 МПа · от 21 (КТ17) до -269 МПа (КТ4) при

Рис. 2. Влияние толщины TiC-покрытия на напряженное состояние поверхностного слоя 3 в Si₃N₄-TiC-Y₂O₃-керамике; Δ_п указана на кривых, мкм

Рис. 3. Влияние толщины TiC-покрытия на напряженное состояние поверхностного слоя MФ3 в Si₃N₄-TiC-Y₂O₃-керамике: Δ_{π} указана на кривых, мкм

апазоне 301 МПа — от 286 (КТ23) до 587 МПа (КТ18) при σ_{ср} = 392 МПа, *s* = 73 МПа.

Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностном слое МФЗ показаны на рис. 3. Установлено, что напряжения σ_{11} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 216 МПа — от -4 (КТ25) до -220 МПа (КТ41) при $\sigma_{\rm cp} = -133$ МПа, s = 53 МПа и N = 0 (рис. 3, *a*). При $\Delta_{\pi} = 10$ мкм формируются σ_{11} , изменяющиеся в диапазоне 242 МПа — от -43 (КТ25) до -285 МПа (КТ41) при $\sigma_{\rm cp} = -153$ МПа, s = 62 МПа и N = 0. При $\Delta_{\pi} = 15$ мкм формируются σ_{11} с диапазоном изменения 254 МПа — от -64 (КТ25) до -318 МПа (КТ41) при $\sigma_{\rm cp} = -155$ МПа, s = 77 МПа и N = 0.

Напряжения σ_{22} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 280 МПа — от 5 (КТ40) до -275 МПа (КТ27) при $\sigma_{cp} = -87$ МПа, s = 75 МПа и N = 3(рис. 3, б). При $\Delta_{\pi} = 10$ мкм формируются σ_{22} с диапазоном изменения 347 МПа — от 17 (КТ40) до -330 МПа (КТ27) при $\sigma_{cp} = -100$ МПа, s = 92МПа и N = 2. При $\Delta_{\pi} = 15$ мкм образуются σ_{22} , изменяющиеся в диапазоне 381 МПа — от 33 (КТ40) до -348 МПа (КТ27) при σ_{ср} = -99 МПа, *s* = 105 МПа и *N* = 2.

Напряжения σ_{12} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 112 МПа — от -14 (КТ26) до -126 МПа (КТ38) при σ_{ср} = -78 МПа, *s* = 33 МПа и N = 0 (рис. 3, в). При Δ_{π} = 10 мкм формируются σ_{12} изменяющиеся В диапазоне 118 МПа — от -66 (КТЗ2) до -184 МПа (KT38) при σ_{ср} = -132 МПа,

s = 37 МПа и N = 0. При $\Delta_{\pi} = 15$ мкм формируются напряжения с диапазоном изменения 147 МПа — от -92 (КТ32) до -239 МПа (КТ42) при $\sigma_{cp} = -168$ МПа, s = 41 МПа и N = 0.

Интенсивность напряжений σ_i в этом поверхностном слое при $\Delta_n = 5$ мкм изменяется в диапазоне 221 МПа — от 84 (КТ25) до 305 МПа (КТ40) при $\sigma_{cp} = 204$ МПа, s = 58 МПа (рис. 3, *e*). При $\Delta_n = 10$ мкм диапазон изменения σ_i составляет 232 МПа — от 162 (КТ33) до 394 МПа (КТ40) при $\sigma_{cp} = 287$ МПа, s = 75 МПа. При $\Delta_n = 15$ мкм σ_i изменяется в диапазоне 319 МПа — от 184 (КТ33) до 503 МПа (КТ42) при $\sigma_{cp} = 344$ МПа, s = 93 МПа.

Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностном слое МФМ показаны на рис. 4. При $\Delta_{\pi} = 5$ мкм в этом слое формируются напряжения σ_{11} , изменяющиеся в диапазоне 243 МПа — от -46 (КТ43) до -289 МПа (КТ59) при $\sigma_{cp} = -170$ МПа, s = 61 МПа и N = 0 (рис. 4, *a*). При $\Delta_{\pi} = 10$ мкм образуются σ_{11} , изменяющиеся в диапазоне $\Sigma = 235$ МПа от -75 (КТ43) до -310 МПа (КТ59)

Рис. 4. Влияние толщины TiC-покрытия на напряженное состояние поверхностного слоя MΦM в Si₃N₄-TiC-Y₂O₃-керамике; Δ_π указана на кривых, мкм

при $\sigma_{cp} = -166$ МПа, s = 66 МПа и N = = 0. При $\Delta_{\pi} = 15$ мкм формируются σ_{11} с диапазоном изменения 253 МПа от -79 (КТ43) до -332 МПа (КТ59) при $\sigma_{cp} = -162$ МПа, s = 75 МПа и N = 0.

Напряжения σ_{22} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 246 МПа — от -2 (КТ59) до -248 МПа (КТ45) при $\sigma_{cp} = -122$ МПа, s = 74 МПа и N = 0 (рис. 4, δ). При $\Delta_{\pi} = 10$ мкм формируются σ_{22} с

56

диапазоном изменения 251 МПа — от 5 (КТ59) до -246 МПа (КТ45) при $\sigma_{cp} = -111$ МПа, s = 75 МПа и N == 2. При $\Delta_{\pi} = 15$ мкм образуются σ_{22} , изменяющиеся в диапазоне 276 МПа от 18 (КТ59) до -258 МПа (КТ45) при $\sigma_{cp} =$ = -102 МПа, s = 84МПа и N = 2.

Напряжения σ_{12} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 93 МПа — от -43 (КТ49) до -136 МПа (КТ43) при $\sigma_{cp} = -93$

Рис. 5. Влияние толщины TiC-покрытия на напряженное состояние поверхностного слоя M в Si_3N_4 -TiC- Y_2O_3 -керамике; Δ_π указана на кривых, мкм

МПа, s = 31 МПа и N = 0 (рис. 4, 6). При $\Delta_{\pi} = 10$ мкм образуются σ_{12} , изменяющиеся в диапазоне 137 МПа — от -73 (КТ49) до -210 МПа (КТ43) при $\sigma_{cp} = -136$ МПа, s = 39 МПа и N = 0. При $\Delta_{\pi} =$ = 15 мкм формируются σ_{12} с диапазоном изменения 178 МПа — от -96 (КТ49) до -274 МПа (КТ43) при $\sigma_{cp} = -170$ МПа, s = 96 МПа и N = 0.

Интенсивность напряжений σ_i при $\Delta_{\pi} = 5$ мкм изменяется в диапазоне 201 МПа — от 164 (КТ50) до 365 МПа (КТ59) при $\sigma_{cp} = 246$ МПа, s == 61 МПа (рис. 4, *г*). При $\Delta_{\pi} = 10$ мкм σ_i изменяется в диапазоне 246 МПа — от 176 (КТ50) до 422 МПа (КТ59) при $\sigma_{cp} = 298$ МПа, s = 78 МПа. При $\Delta_{\pi} = 15$ мкм σ_i изменяется в диапазоне 292 МПа — от 196 (КТ50) до 488 МПа (КТ59) при $\sigma_{cp} =$ = 346 МПа, s = 96 МПа.

Результаты расчетов σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностном слое М показаны на рис. 5. Установлено, что при $\Delta_{\pi} = 5$ мкм в этом поверхностном слое формируются σ_{11} , изменяющиеся в диапазоне 411 МПа — от -99 (КТ67) до 312 МПа (КТ61) при $\sigma_{cp} = 124$ МПа, s = 124 МПа и N = 3

(рис. 5, *a*). При Δ_п = σ_{i} = 10 мкм образуют- МПа ся σ_{11} , изменяющиеся в диапазоне 435 МПа — от -78 (КТ67) до 357 МПа (КТ61) при σ_{ср} = 164 МПа, s = 145 МПа и N = = 3. При Δ_п = 15 мкм формируются σ₁₁ с диапазоном изменения 474 МПа от -96 (КТ78) до 378 МПа (КТ61) при σ_{ср} = = 190 MПа, s = 153

= 190 мпа, s = 155 МПаи N = 2. Напряжения

 σ_{22} при $\Delta_{\pi} = 5$ мкм изменяются в диа-

пазоне 545 МПа — от -202 (КТ62) до 343 МПа (КТ78) при $\sigma_{cp} = 66$ МПа, s = 151 МПа и N = 3(рис. 5, 6). При $\Delta_{\pi} = 10$ мкм формируются σ_{22} с диапазоном изменения 634 МПа — от -236 (КТ62) до 398 МПа (КТ78) при $\sigma_{cp} = 84$ МПа, s = = 181 МПа и N = 3. При $\Delta_{\pi} = 15$ мкм образуются σ_{22} , изменяющиеся в диапазоне 657 МПа от -244 (КТ62) до 413 МПа (КТ78) при $\sigma_{cp} = 102$ МПа, s = 192 МПа и N = 2.

Напряжения σ_{12} при $\Delta_{\pi} = 5$ мкм изменяются в диапазоне 385 МПа — от 123 (КТ69) до -262 МПа (КТ77) при $\sigma_{cp} = -118$ МПа, s = 116 МПа и N = 2(рис. 5, в). При $\Delta_{\pi} = 10$ мкм образуются σ_{12} , изменяющиеся в диапазоне 475 МПа — от 119 (КТ69) до -356 МПа (КТ77) при $\sigma_{cp} = -175$ МПа, s = 147МПа и N = 2. При $\Delta_{\pi} = 15$ мкм формируются σ_{12} с диапазоном изменения 519 МПа — от 107 (КТ69) до -412 МПа (КТ77) при $\sigma_{cp} = -215$ МПа, s = 162МПа и N = 2.

Интенсивность напряжений σ_i при $\Delta_{\pi} = 5$ мкм изменяется в диапазоне 282 МПа — от 229 (КТ69) до 511 МПа (КТ77) при $\sigma_{cp} = 369$ МПа, s =

Рис. 6. Влияние толщины TiC-покрытия на σ_i в KT поверхностных слоев 3 (*a*), МΦЗ (б), МΦМ (*в*) и М (*г*)

НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

	σ ₁₁			σ ₂₂			σ_{12}			σ _i		
Показатели	при толщине покрытия Δ _п , мкм											
	5	10	15	5	10	15	5	10	15	5	10	15
Поверхность зерна, примыкающая к межзеренной фазе												
Σ	252	268	276	260	290	316	129	123	161	219	264	301
σ_{makc}	-249	-284	-279	-234	-269	-273	-184	-241	-308	315	473	587
$\sigma_{\rm MHH}$	3	-16	-3	26	21	43	-55	-118	-147	96	209	286
$\sigma_{\rm cp}$	-146	-162	-152	-87	-91	-80	-96	-156	-198	226	327	392
Ν	1	0	0	2	2	3	0	0	0	-	-	-
s	91	95	98	82	92	99	31	28	38	69	65	73
Поверхность межзеренной фазы, примыкающая к зерну												
Σ	216	242	254	280	347	381	112	118	147	221	232	319
σ_{makc}	-220	-285	-318	-275	-330	-348	-126	-184	-239	305	394	503
$\sigma_{\rm MHH}$	-4	-43	-64	5	17	33	-14	-66	-92	84	162	184
$\sigma_{\rm cp}$	-133	-153	-155	-87	-100	-99	-78	-132	-168	204	287	344
Ν	0	0	0	3	2	2	0	0	0	-	-	-
s	53	62	77	75	92	105	33	37	41	58	75	93
Поверхность межзеренной фазы, примыкающая к матрице												
Σ	243	235	253	246	251	276	93	137	178	201	246	292
σ_{makc}	-289	-310	-332	-248	-246	-258	-136	-210	-274	365	422	488
$\sigma_{\rm MMH}$	-46	-75	-79	-2	5	18	-43	-73	-96	164	176	196
$\sigma_{\rm cp}$	-160	-162	-166	-122	-111	-102	-93	-136	-170	246	298	346
Ν	0	0	0	0	2	2	0	0	0	-	-	-
s	61	66	75	74	75	84	31	39	96	61	78	96
Поверхность матрицы, примыкающая к межзеренной фазе												
Σ	411	435	474	545	634	657	385	475	519	282	446	535
σ_{makc}	312	357	378	343	398	423	-262	-356	-412	511	697	787
$\sigma_{\rm MHH}$	-99	-78	-96	-202	-236	-244	123	119	107	229	251	252
$\sigma_{\rm cp}$	124	164	190	66	84	102	-118	-175	-215	369	477	543
N	3	3	2	3	3	2	2	2	2	-	-	-
s	124	145	153	151	181	192	116	147	162	79	128	160

= 79 МПа (рис. 5, *г*). При $\Delta_{\rm n}$ = 10 мкм σ_i изменяется в диапазоне 446 МПа — от 251 (КТ69) до 697 МПа (КТ77) при $\sigma_{\rm cp}$ = 477 МПа, *s* = 128 МПа. При $\Delta_{\rm n}$ = 15 мкм σ_i изменяется в диапазоне 535 МПа — от 252 (КТ69) до 787 МПа (КТ78) при $\sigma_{\rm cp}$ = 543 МПа, *s* = 160 МПа.

Анализ полученных данных показывает, что увеличение толщины TiC-покрытия приводит к однозначному возрастанию σ_{11} , σ_{22} , σ_{12} и о, в поверхностных слоях структурных элементов нитридной керамики, причем степень этого влияния существенно зависит от двух факторов. Во-первых, от структурного элемента керамики и, во-вторых, от расположения КТ в его поверхностном слое. В качестве примера на рис. 6 показаны зависимости изменения о, в КТ разных поверхностей. Видно, что с увеличением Δ_{π} с 5 до 15 мкм значения σ_i возрастают в поверхностных слоях: 3 (рис. 6, а) в 1,4, 1,5 и 1,8 раза в КТ7, КТ14 и КТ18 соответственно (расположение этих КТ см. на рис. 1 в статье [22]); МФЗ (рис. 6, б) в 1,4, 1,6 и 2,7 раза в КТЗЗ, КТЗ6 и КТ42 соответственно; МФМ (рис. 6, в) в 1,2, 1,4 и 1,7 раза в КТ49, КТ47 и КТ43 соответственно; М (рис. 6, г) в 1,1, 1,4 и 1,6 раза в КТ69, КТ72 и КТ78 соответственно.

Приведенные в таблице систематизированные результаты расчетов свидетельствуют о сложном характере трансформации напряженного состояния поверхностного слоя нитридной керамики под действием теплового потока. Последовательно проанализируем влияние толщины TiC-покрытия на показатели структурной неоднородности σ_{11} , σ_{22} , σ_{12} и σ_i в поверхностных слоях разных элементов Si₃N₄-TiC-Y₂O₃керамики.

Установлено, что с увеличением Δ_n с 5 до 15 мкм в поверхностных слоях 3, МФ3, МФМ и М максимальные значения σ_{11} увеличиваются в 1,1, 1,4, 1,1 и 1,2 раза; диапазон изменения σ_{11} в 1,1, 1,2, 1,05 и 1,2 раза, среднее значение σ_{11} в 1,05, 1,2, 1,05 и 1,5 раза соответственно и стандартное отклонение в 1,1, 1,5, 1,2 и 1,2 раза соответственно. Также уменьшается число смен знака σ_{11} в поверхностных слоях 3 и М, в поверхностных слоях МФ3 и МФМ этот показатель не изменяется.

С изменением толщины покрытия максимальные значения σ_{22} в поверхностных слоях 3, МФЗ, МФМ и М увеличиваются в 1,2, 1,3, 1,05 и 1,2 раза; диапазон изменения в 1,2, 1,4, 1,1 и 1,2 раза и стандартное отклонение в 1,2, 1,4, 1,1 и 1,3 раза соответственно. Среднее значение σ_{22} увеличивается в поверхностных слоях МФЗ и М в 1,1 и 1,5 раза, а в 3 и МФМ уменьшается в 1,1 и 1,2 раза соответственно. Изменение Δ_{π} приводит

58

к уменьшению числа смен знака для напряжений σ_{22} в поверхностных слоях МФЗ и М с З до 2. В поверхностных слоях 3 и МФМ с увеличением Δ_{π} этот показатель возрастает с 2 до 3 и с 0 до 2 соответственно.

С увеличением толщины покрытия максимальные значения σ_{12} в поверхностных слоях 3, МФЗ, МФМ и М увеличиваются в 1,7, 1,9, 2,0 и 1,6 раза; диапазон изменения в 1,2, 1,3, 1,9 и 1,3 раза, стандартное отклонение в 1,2, 1,2, 3,0 и 1,4 раза и среднее значение в 2,0, 2,1, 1,8 и 1,8 раза соответственно. Число смен знака напряжений σ_{12} с увеличением Δ_{π} не изменяется.

С увеличением толщины покрытия максимальные значения о_i в поверхностных слоях 3, МФЗ, МФМ и М увеличиваются в 1,9, 1,6, 1,3 и 1,5 раза; диапазон изменения в 1,4, 1,4, 1,5 и 1,9 раза, стандартное отклонение в 1,1, 1,6, 1,6 и 2,0 раза и среднее значение в 1,7, 1,7, 1,4 и 1,5 раза соответственно.

Библиографический список

1. *Soboyejo, W. O.* Review of high temperature ceramics for aerospace applications / *W. O. Soboyejo, J. D. Obayemi, E. Annan* [et al.] // Advanced Materials Research. — 2016. — Vol. 1132. — P. 385–407.

2. **Кузин, В. В.** Инструментальное обеспечение высокоскоростной обработки резанием / В. В. Кузин, С. И. Досько, В. Ф. Попов [и др.] // Вестник машиностроения. — 2005. — № 9. — С. 46–50.

Kuzin, V. V. Tooling for high-speed cutting / V. V. Kuzin, S. I. Dos'ko, V. F. Popov [et al.] / Russian Engineering Research. -2005. - Vol. 25, \mathbb{N} 9. - P. 20–25.

3. **De**, **U**. Ferroelectric materials for high temperature piezoelectric applications / U. De // Solid State Phenomena. — 2015. — Vol. 232. — P. 235–278.

4. *MohdNor, A.* Review on ceramic application in automotive turbocharged engine / *A. MohdNor, M. R. Abbas, S. Rajoo* [et al.] // Applied Mechanics and Materials. — 2014. — Vol. 660. — P. 219–228.

5. **Кузин, В. В.** Работоспособность режущих инструментов из нитридной керамики при обработке чугунов / *В. В. Кузин* // Вестник машиностроения. — 2004. — № 5. — С. 39-43.

Kuzin, V. V. Effectiveness of the nitride ceramic cutting tools in machining the gray irons / *V. V. Kuzin* // Russian Engineering Research. — 2004. — Vol. 24, № 5. — P. 21–27.

6. **Кузин, В. В.** Тепловое состояние керамических режущих инструментов при высокоскоростной обработке резанием / *В. В. Кузин* // Вестник машиностроения. — 2004. — № 9. — С. 47-52.

Kuzin, V. V. Thermal state of ceramic cutting tools in high-speed cutting / *V. V. Kuzin* // Russian Engineering Research. — 2004. — Vol. 24, № 9. — P. 32–40.

7. **Кузин, В. В.** Изнашивание режущих пластин из нитридной керамики при обработке отливок из серых чугунов / В. В. Кузин, С. Н. Григорьев, С. Ю. Фёдоров // Вестник машиностроения. — 2013. — № 3. — С. 58-62.

Kuzin, V. V. Wear of nitride ceramic inserts in machining gray cast iron castings / V. V. Kuzin, S. N. Grigor'ev, S. Yu. Fedorov // Russian Engineering Research. – 2013. – Vol. 33, № 6. – P. 343–347.

ЗАКЛЮЧЕНИЕ

В результате выполненных численных экспериментов установлено, что изменение толщины TiC-покрытия, нанесенного на керамику системы Si_3N_4 -TiC- Y_2O_3 , приводит под действием теплового потока к уменьшению ее температуры и увеличению напряжений в поверхностном слое. При увеличении толщины TiC-покрытия с 5 до 15 мкм зафиксирована существенная трансформация напряженного состояния поверхностного слоя этой керамики. Выявлено, что увеличение толщины TiC-покрытия с бака керамики. Выявлено, что увеличение толщины TiC-покрытия приводит к повышению показателей неоднородности σ_{11} , σ_{22} , σ_{12} и σ_i (исключением являются средние значения σ_{11} и σ_{22} в поверхностных слоях 3 и MФМ).

* * *

Работа выполнена при поддержке Минобрнауки России в рамках выполнения государственного задания в сфере научной деятельности.

8. **Кузин, В. В.** Износ инструментов из нитридной керамики при обработке никелевых сплавов / В. В. Кузин, М. А. Волосова, М. Ю. Фёдоров // Трение и износ. — 2013. — Т. 34, № 3. — С. 265–271.

Kuzin, V. V. Wear of tools from nitride ceramics when machining nickel-based alloys / *V. V. Kuzin, M. A. Volosova, M. Yu. Fedorov //* J. Friction and Wear. — 2013. — T. 34, № 3. — C. 199–203.

9. **Кузин, В. В.** Роль теплового фактора в механизме износа керамических инструментов. Часть 1. Макроуровень / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Трение и износ. — 2014. — № 6. — С. 728–734.

Kuzin, V. V. The role of the thermal factor in the wear mechanism of ceramic tools. Part 1. Macrolevel / V. V. Kuzin, S. N. Grigoriev, M. A. Volosova // J. Friction and Wear. -2014. - Vol. 35, \mathbb{N} 6. - P. 505–510.

10. **Кузин, В. В.** Роль теплового фактора в механизме износа керамических инструментов. Часть 2. Микроуровень / В. В. Кузин, С. Н. Григорьев, М. Ю Фёдоров // Трение и износ. — 2015. — № 1. — С. 50-55.

Kuzin, V. V. Role of the thermal factor in the wear mechanism of ceramic tools. Part 2. Microlevel / V. V. *Kuzin, S. N. Grigoriev, M. Yu. Fedorov* // Journal of Friction and Wear. — 2015. — Vol. 36, № 1. — P. 40–44.

11. *Kim, D.W.* TiC and TiN coatings formed on Si₃N₄-TiC composite ceramics by chemical vapour deposition / *D. W. Kim, Y. J. Park, J. G. Lee, J. S. Chun //* Thin Solid Films. —1988. — Vol. 165, № 1. — P. 149–161.

12. Almeida, F. A. MPCVD diamond coating of Si_3N_4 -TiN electroconductive composite substrates / F. A. Almeida, M. Belmonte, A. J. S. Fernandes [et al.] // Diamond and Related Materials. — 2007. — Vol. 16, Ne 4-7. — P. 978–982.

13. **Григорьев, С. Н.** Инженерия поверхности металлорежущего инструмента методом комбинированной вакуумно-плазменной обработки. Часть 1 / С. Н. Григорьев, М. А. Волосова // Ремонт, восстановление, модернизация. — 2004. — № 7. — С. 2–6.

14. **Kuzin, V.** Tool life and wear mechanism of coated Si_3N_4 ceramic tools in turning grey cast iron / V. Kuzin,

S. Grigoriev // Key Engineering Materials. — 2014. — Vol. 581. — P. 14–17.

15. *Grigoriev, S.* The stress-strained state of ceramic tools with coating / *S. Grigoriev, V. Kuzin, D. Burton, D. Batako //* Proceedings of the 37th International Conference MATADOR, 2012. — 2013. — P. 181–184.

16. *Kuzin, V.* Applications of multi-level method of stress-strain state analysis in ceramic tools design / *V. Kuzin, S. Grigoriev, M. Fedorov //* Applied Mechanics and Materials. — 2016. — Vol. 827. — P. 173–176.

17. *Kuzin, V.* Designing of details taking into account degradation of structural ceramics at exploitation / *V. Kuzin, S. Grigoriev, M. Volosova* [et al.] // Applied Mechanics and Materials. — 2015. — Vols. 752/753. — P. 268–271.

18. **Григорьев, С. Н.** Напряженно-деформированное состояние инструментов из нитридной керамики с покрытием / С. Н. Григорьев, В. В. Кузин, М. А. Волосова // Вестник машиностроения. — 2012. — № 6. — С. 64-69.

Grigor'ev, S. N. Stress-strain state of a coated nitride-ceramic tool / S. N. Grigor'ev, V. V. Kuzin, M. A. Volosova // Russian Engineering Research. -2012. -Vol. 32, N 7/8. - P. 561–566.

19. **Григорьев, С. Н.** Влияние свойств керамики на напряженно-деформированное состояние режущей пластины в условиях установившейся теплопроводности / С. Н. Григорьев, В. В. Кузин, Д. Буртон [и др.] // Вестник машиностроения. — 2012. — № 4. — С. 76-80.

Grigor'ev, S. N. Influence of ceramic properties on the stress-strain state of a plate in steady heat conduction / *S. N. Grigor'ev, V. V. Kuzin, D. Burton* [et al.] // Russian Engineering Research. — 2012, — Vol. 32, № 4. — P. 374–379.

20. **Кузин, В. В.** Влияние покрытия ТіС на напряженно-деформированное состояние пластины из высокоплотной нитридной керамики в условиях нестационарной термоупругости / В. В. Кузин, С. Н.

Григорьев, М. А. Волосова // Новые огнеупоры. — 2013. — № 9. — С. 52–57.

Kuzin, V. V. Effect of a TiC coating on the stressstrain state of a plate of a high-density nitride ceramic under nonsteady thermoelastic conditions / V. V. *Kuzin, S. N. Grigor'ev, M. A. Volosova //* Refractories and Industrial Ceramics. -2014. - Vol. 54, $M \leq 5$. - P. 376-380.

21. Волосова, М. А. Влияние покрытия из нитрида титана на структурную неоднородность напряжений в оксидно-карбидной керамике. Часть 4. Действует тепловой поток / М. А. Волосова, С. Н. Григорьев, В. В. Кузин // Новые огнеупоры. — 2015. — № 2. — С. 47-52.

Volosova, M. A. Effect of titanium nitride coating on stress structural inhomogeneity in oxide-carbide ceramic. Part 4. Action of heat flow / M. A. Volosova, S. N. Grigor'ev, V. V. Kuzin // Refractories and Industrial Ceramics. — 2015. — Vol. 56, № 1. — P. 91–96.

22. **Кузин, В. В.** Трансформация напряженного состояния поверхностного слоя нитридной керамики при изменении толщины ТіС-покрытия. Вариант нагружения — действует сосредоточенная силовая нагрузка / В. В. Кузин, М. Ю. Фёдоров // Новые огнеупоры. — 2016. — № 8. — С. 59-65.

23. **Кузин, В. В.** Трансформация напряженного состояния поверхностного слоя нитридной керамики при изменении толщины ТіС-покрытия. Вариант нагружения — действует распределенная силовая нагрузка / В. В. Кузин, М. Ю. Фёдоров // Новые огнеупоры. — 2016. — № 10. — С. 58-63.

24. *Kuzin, V.* Method of investigation of the stressstrain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35. ■

> Получено 19.09.16 © В. В. Кузин, М. Ю. Фёдоров, 2017 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

60