Д. т. н. А. В. Хмелёв (⊠)

Рижский технический университет, Институт силикатных материалов, г. Рига. Латвия

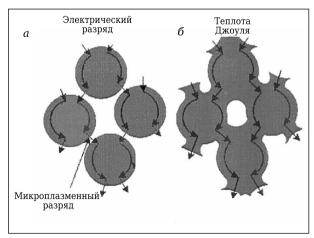
УДК 666.762.14+666.762.52]:66.046.44

ПОЛУЧЕНИЕ МУЛЛИТОЦИРКОНИЕВОЙ КЕРАМИКИ ПЛАЗМЕННО-ИСКРОВЫМ СПОСОБОМ

Показаны результаты развития кристаллических фаз, кажущейся плотности, степени спекания, твердости по Виккерсу, предела прочности при сжатии, линейной корреляции между степенью спекания и механическими свойствами (твердостью по Виккерсу и пределом прочности при сжатии) муллитоциркониевой керамики, полученной в ходе плазменно-искрового спекания с добавкой Y_2O_3 в температурном диапазоне 1250–1450 °C без глины и с добавкой глины.

Добавка глины в спекаемой исходной смеси компонентов способствует интенсивной муллитизации, а добавка Y_2O_3 — интенсивному образованию твердого раствора кубического ZrO_2 в полученных образцах в температурном диапазоне (1250–1450 °C). Добавка глины в спекаемой исходной смеси компонентов способствует получению образцов с наибольшими значениями кажущейся плотности и степени спекания. Это обусловливает бо́льшие значения твердости по Виккерсу и предела прочности при сжатии таких образцов по сравнению с показателями образцов, полученных только с добавкой Y_2O_3 . Линейная корреляция между степенью спекания и механическими свойствами наиболее выражена для образцов, полученных из спеченной смеси компонентов без добавки глины.

Ключевые слова: муллитоциркониевая керамика, плазменно-искровое спекание, свойства, добавки Y_2O_3 и глины.


ри получении муллитовой и муллитоциркониевой керамики традиционным методом (обжигом в печах) применяют один из широко распространенных и наиболее простых способов спекания [1-3]. Таким способом полученная керамика характеризуется неравномерностью спекания и недостаточно высокими показателями физико-механических свойств [2, 3]. Это связано с формированием в ходе спекания исходных смесей порошков градиента температур, с неравномерностью и неполнотой их спекания, развитием процесса рекристаллизации (роста зерен) в получаемом керамическом материале [3, 4]. Для достижения наиболее полного спекания исходных порошков [2-4] необходимо увеличение длительности процесса и создание более высокотемпературного режима 1400-1500 °C.

Для решения этих задач применяются более современные виды спекания, начиная от микроволнового вплоть до горячего, горячего изотактического и плазменно-искрового спекания [5, 6]. В ходе двух последних методов процессы уплотнения и спекания исходных порошков происходят одновременно, развивается интенсивная пластическая деформация (вязкое течение) под действием приложенной внешней нагрузки (пуансона) на спекаемый исходный порошок [7, 8]. Это способствует более активной диффузии вещества в поры, более

⊠ A. B. Хмелёв E-mail: aleksejs hmelovs@ktf.rtu.lv равномерному спеканию частиц исходных порошков и получению достаточно плотных керамических образцов с минимальной пористостью [9, 10].

Однако данным видам спекания присущи некоторые недостатки: возможность получения образцов только простых форм, значительная энергозатратность в ходе спекания, высокая себестоимость графитовой пресс-формы и пуансона, а также получаемого керамического материала, что ограничивает широкое применение этих методов спекания на практике [5, 7, 10].

Механизм спекания частиц при плазменноискровом методе [11] состоит из нескольких этапов (рис. 1). Применяемое для этого вида спекания оборудование представлено на рис. 2.

Рис. 1. Механизм спекания частиц при плазменноискровом методе: a — микроплазменный разряд в порошке; δ — выделение теплоты Джоуля и срастание частиц прессуемого порошка

№ 4 2014 **Hobbie Ofheytopbi** ISSN 1683-4518 **33**

Рис. 2. Оборудование, используемое для плазменноискрового спекания (модель SPS, Summimoto, 825E, Япония)

Процессы, происходящие в ходе плазменноискрового спекания:

- пропускание электрического разряда через частицы прессуемого порошка, мгновенный разогрев частиц исходного порошка;
- формирование и равномерное распределение микроплазменного разряда через весь объем прессуемого порошка, выделение теплоты Джоуля;
- плавление частиц прессуемого порошка, их срастание с образованием перемычки между частицами и равномерное распространение теплоты Джоуля от одной частицы к другой через перемычки между ними;
- получение монолитного керамического материала.

Цель данный работы — получение муллитоциркониевой керамики из оксидных порошков (Al₂O₃, SiO₂, ZrO₂) с добавкой Y₂O₃ без глины и с добавкой глины методом плазменно-искрового спекания в температурном диапазоне 1250–1450 °C, изучение влияния температуры спекания и используемых добавок на развитие кристаллических фаз, кажущейся плотности, степени спекания, твердости по Виккерсу, предела прочности при сжатии образцов, определение линейной корреляции между степенью спекания и механическими свойствами (твердостью по Виккерсу и пределом прочности при сжатии) образцов.

Используемые исходные компоненты для получения муллитоциркониевой керамики и их характеристика приведены в табл. 1. Глина, используемая в спекаемой исходной смеси компонентов, характеризуется средними химическим и минеральным составами. Химический состав, мас. %: SiO₂ 50,5, Al₂O₃ 20,8, Fe₂O₃ 7,5, TiO₂ 1,2,

СаО 1,9, MgO 3,6, K_2O/Na_2O 6,0/1,8, другие компоненты 6,7. Минеральный состав, мас. %: иллит $Al_{2-x}(OH)_2[(Si,Al)_2O_5]_2\cdot K_{0.5}(H_2O)_n$ 60, кварц SiO_2 18, кальцит $CaCO_3$ 3,5, гётит α -FeOOH 7, каолинит — $Al_2(OH)_4[Si_2O_5]$ 4,8, вода, органические примеси 6,7. Для приготовления муллитоциркониевой керамики исходные компоненты вводили в шихту в количестве, указанном в табл. 2.

Схема приготовления исходных шихт компонентов, спекания смесей компонентов, получения образцов и изучения их свойств показана на рис. 3.

Состав кристаллических фаз в спеченных образцах определяли рентгенодифракционным методом (модель PANAlytical X'Pert PRO) с Cu K_{α} -излучением, интервалом сканирования $2\theta = 10 \div 70^{\circ}$, скоростью вращения гониометра 2° /мин.

Кажущуюся плотность образцов определяли методом гидростатического взвешивания (метод Архимеда) и рассчитывали по формуле

 $\rho_{\text{каж}} = m_0/m_1$

где $\rho_{\text{каж}}$ — кажущаяся плотность, г/см³; m_0 — масса сухого образца, г; m_1 — масса образца, насыщенного водой в водной среде ($T=20\pm2$ °C, $\rho_{\text{H}_2\text{O}}=1$ г/см³).

Степень спекания образцов рассчитывали по формуле

 $K = (\rho_{\text{каж}}/\rho_{\text{ист}})\cdot 100,$

где K — степень спекания, %; $\rho_{\text{каж}}$ — кажущаяся плотность, г/см³; $\rho_{\text{ист}}$ — истинная плотность, г/см³, $\rho_{\text{ист}}$ = 3,56 г/см³.

Твердость образцов по Виккерсу определяли методом вдавливания в испытуемый керамический образец правильной четырехгранной ал-

Таблица 1. **Исходные компоненты и их характеристика**

•		
Исходнные компоненты	Фирма, производитель	Степень чистоты, %
γ-Al ₂ O ₃	Aldrich, Бельгия	98,7
SiO ₂	Merck, Германия	97,5
ZrO _{2мон}	Aldrich, Бельгия	99,5
Y ₂ O ₃	Acros Organics, Бельгия	99,5
Глина	Месторождение Лиепас, Латвия	58,5

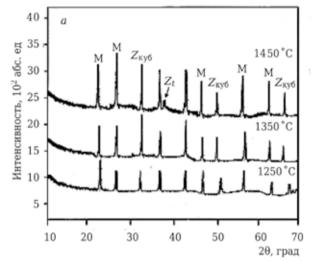
Таблица 2. **Количественный состав исходной шихты компонентов, мас.** %

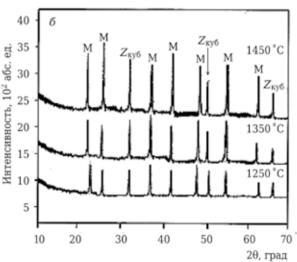
Состав	Содержание в исходной шихте					
	γ-Al ₂ O ₃	SiO ₂	ZrO _{2мон}	Y_2O_3	Иллитовая глина	
а	62,30	28,00	5,20	4,50	-	
б	57,30	25,85	4,70	4,15	8,00	

Рис. 3. Схема приготовления смесей компонентов, их спекания и получения керамических образцов, определения их свойств

мазной пирамиды с углом 136° между противоположными гранями при времени выдержки $10{\text -}15$ с. В качестве экспериментальной установки для определения твердости по Виккерсу применяли оборудование модели MicroDuromat 3500. Твердость по Виккерсу вычисляли делением нагрузки P на площадь поверхности полученного пирамидального отпечатка по формуле

 $HV = P/S = 1,8544P/d^2$,

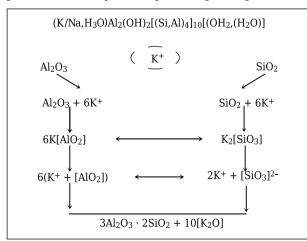

где HV — твердость по Виккерсу, ГПа (кгс/мм²); P — нагрузка, приложенная на поверхность испытуемого образца алмазной пирамидой, кгс, нагрузка составляла 50 H (5 кгс); S — площадь поверхности полученного пирамидального отпечатка, мм²; d — длина диагонали, измеренная на площади поверхности полученного пирамидального отпечатка, мм.


Площадь поверхности полученного пирамидального отпечатка рассчитывали по формуле

 $S = d^2/2\sin(136^\circ/2) = d^2/1,8544.$

Предел прочности при сжатии образцов определяли с использованием оборудования TONI Technik. Применяли керамические образцы цилиндрической формы высотой ~ 5 см и диаметром 30 мм с предварительно отшлифованными (плоскопараллельными) поверхностями. Скорость нагрузки на образец в ходе испытания составляла 0,5 Н/(мм²·с). Развитие кристаллических фаз в спеченных при различных температурах образцах без глины и с добавкой глины показано на рис. 4.

Повышение температуры спекания образцов от 1250 до 1450 °C способствует интенсивной муллитизации и образованию интенсивных дифракционных максимумов твердого раствора кубического ZrO_2 (см. рис. 4, состав a). В то же вре-

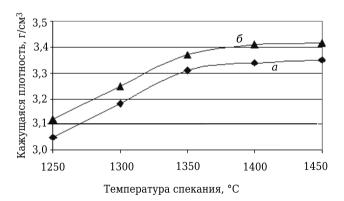

Рис. 4. Состав кристаллических фаз в спеченных образцах в температурном диапазоне 1250–1450 °C: a — без глины; δ — с глиной; M — муллит $3Al_2O_3 \cdot 2SiO_2$; Z_t — тетрагональный ZrO_2 ; $Z_{\rm кy6}$ — твердый раствор кубического ZrO_2

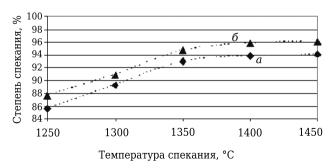
мя полученные в аналогичном температурном диапазоне образцы, содержащие добавку глины, характеризуются более интенсивной муллитизацией и практически неизменной интенсивностью образования твердого раствора кубического ZrO₂ (см. рис. 4, состав б).

На развитие муллита и твердого раствора кубического ZrO_2 влияют как технологические особенности данного процесса спекания (вакуум, пластическая деформация), так и добавка Y_2O_3 , стимулирующая активную муллитизацию [12] и формирование твердого раствора кубического ZrO_2 в результате активного процесса диффузии между частицами (см. рис. 4, состав a). В результате кристаллические фазы начинают формироваться при более низкой температуре спекания.

Эффект от добавки глины, действующей при спекании в качестве плавня, в образцах (см. рис. 4, состав б) на интенсивность муллитизации, повидимому, сказывается через образование более или менее легкоплавких эвтектик с одним или несколькими исходными компонентами спекаемой шихты по схеме, представленной на рис. 5.

В результате это способствует началу муллитизации при пониженной температуре спекания (1250 °C) и способствует образованию дополнительного количества муллитовой фазы, что отражается на более интенсивных дифракционных максимумах муллита. При этом интенсивность дифракционных максимумов твердого раствора кубического ZrO₂ обеспечивается добавкой Y_2O_3 . Стоит отметить, что образование кубического ZrO₂ при спекании в данных условиях смесей компонентов (составы a, δ) согласно диаграммам состояния равновесия двухфазной системы ZrO₂-Y₂O₃ (по Брауну и Оделлу, Фан Фукану и Келлеру) [13] происходит двумя путями: прямой диффузией катионов иттрия в кристаллическую решетку ZrO₂ с дальнейшим ее преобразованием в кубическую и через образование


Рис. 5. Механизм образования легкоплавких эвтектик при спекании исходной смеси компонентов с добавкой иллитовой глины


и распад твердого раствора пироцирконата иттрия $Y_2Zr_2O_7$.

Образцы, полученные при различных температурах, характеризуются разными значениями кажущейся плотности и степени спекания (рис. 6).

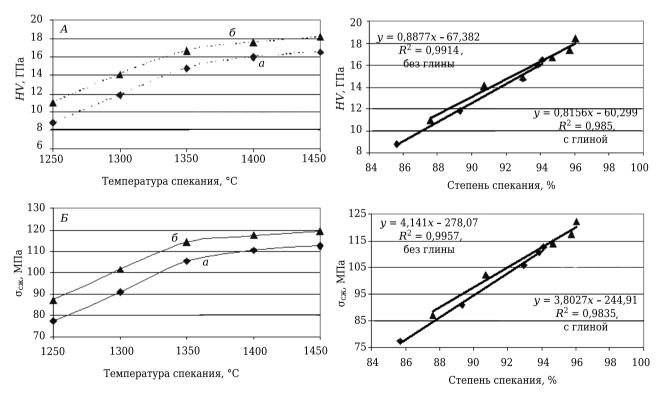
Повышение температуры спекания исходной смеси компонентов без добавки глины (состав а) в диапазоне 1250-1350 °C способствует значительному и стремительному росту кажущейся плотности и степени спекания получаемых образцов. Это объясняется одновременным действием нескольких факторов. В начальной стапии прессуемая и спекаемая исходная смесь компонентов характеризуется развитой пористостью, что способствует интенсивному заполнению пор диффундирующим в них веществом. Происходит более активный переход исходной смеси компонентов в вязкотекучее состояние под действием пластической деформации, усиливающее диффузию вещества, и влияние добавки Y2O3, стимулирующей спекание [12, 14]. При температуре спекания от 1350 до 1450 °C интенсивность спекания существенно замедляется, что указывает на получение достаточно плотных керамических образцов.

Интенсивность спекания исходной смеси компонентов в присутствии глины (состав б) при росте температуры аналогичная составу смеси компонентов, не содержащих глину (состав а). Разница лишь в больших значениях кажущейся плотности и степени спекания керамических образцов, по-

Рис. 6. Развитие кажущейся плотности и степени спекания образцов составов a и b (указаны на кривых) в зависимости от температуры спекания (1250–1450 °C)

лученных при спекании смеси, содержащей добавку глины. Роль добавки глины в ходе спекания исходной смеси компонентов сводится к образованию расплавов на основе легкоплавких эвтектик (см. рис. 5). Это существенно увеличивает площадь поверхности контакта между реагирующими частицами компонентов. Также с повышением температуры спекания уменьшается вязкость образующихся расплавов. В результате возрастает скорость диффузии компонентов между частицами и вещества через образующиеся расплавы (см. рис. 5). При более высоких температурах спекания (1350-1450 °C) интенсивность спекания снижается. Это связано с потреблением образующихся расплавов на спекание и процесс муллитизации (см. рис. 5). В результате на конечной стадии спекания смеси компонентов развивается диффузионный механизм переноса вещества.

Увеличение кажущейся плотности и степени спекания образцов влияет на развитие твердости по Виккерсу и предел прочности при сжатии (рис. 7).


Керамические образцы, спеченные из исходной смеси компонентов без добавки глины (состав а) в температурном диапазоне 1250–1350 °С, показывают стремительный рост значений твердости по Виккерсу и предела прочности при сжатии, характеризуясь наиболее высокими значениями для образцов, полученных при

1400 и 1450 °C. Это связано с добавкой Y_2O_3 в спекаемой исходной смеси компонентов, которая способствует образованию твердого раствора кубического ZrO_2 , его содержание в спеченных образцах увеличивается с ростом температуры спекания (рис. 4, состав a).

В то же время керамические образцы, полученные при спекании исходной смеси компонентов с добавкой глины (состав б), характеризуются наибольшими значениями твердости по Виккерсу и предела прочности при сжатии. В первую очередь это объясняется влиянием самой добавки глины, образующей расплавы (см. рис. 5), способствующие развитию в определенной мере жидкофазного спекания. Это обусловливает более полное спекание частиц, что отражается на высоких значениях степени спекания (см. рис. 6, состав б) полученных образцов. Также сказывается образование в полученных образцах твердого раствора кубического ZrO₂, содержание которого практически аналогично (см. рис. 4, состав δ) его содержанию в образцах без глины.

Исходя из полученных данных степени спекания, твердости по Виккерсу и прочности на сжатие образцов, ниже указаны результаты их линейной корреляции (рис. 8).

Полученные данные линейной корреляции между степенью спекания и механическими свойствами керамических образцов различны.

Рис. 7. Развитие твердости по Виккерсу HV(A) и предел прочности при сжатии $\sigma_{\rm cж}(B)$ образцов, полученных в температурном диапазоне 1250–1450 °C. Состав образцов указан на кривых

Рис. 8. Данные линейной корреляции между степенью спекания, HV и пределом прочности при сжатии $\sigma_{\text{сж}}$ образцов составов a (\blacklozenge) и δ (\blacktriangle)

Главным образом это определяется наличием глины в спекаемой исходной смеси компонентов. Образцы, полученные при спекании только смеси оксидных порошков (состав а), характеризуются большей корреляцией между степенью спекания и механическими свойствами в отличие от образцов, полученных при спекании аналогичных смесей порошков с добавкой глины (состав б). В последнем случае это связано с влиянием примесей, входящих в состав используемой глины, уменьшением вязкости образующихся расплавов (см. рис. 5), их потреблением в ходе спекания частиц и образованием муллитовой фазы с ростом температуры спекания. Спекание исходной смеси компонентов без глины определяется лишь взаимодействием реагирующих между собой частиц.

Заключение

Повышение температуры спекания в диапазоне 1250–1450 °C, добавка глины в спекаемой

Библиографический список

- 1. **Ebadzadeh**, **T.** Formation of mullite from precursor powders: sintering, microstructure and mechanical properties / **T.** Ebadzadeh // Mat. Sci. Eng. A. 2003. Vol. 355, N 1/2. P. 56–61.
- 2. **Behmanesh**, **N**. Role of mechanical activation of precursors in solid state processing nanostructured mullite phase / N. Behmanesh, S. Heshmati-Manesh, A. Ataie // J. All. Comp. 2008. Vol. 450, № 1/2. P. 421–425.
- 3. **Bijwas, N. C.** Comparative study of zirconia-mullite and alumina-zirconia composites / N. C. Bijwas, S. P. Chaudhuri // Chem. Mat. Sci. 2003. Vol. 22, \mathbb{N} 1. P. 37–41.
- 4. **Park, H. C.** Preparation of zirconia-mullite composites by an infiltration route / H. C. Park, T. Y. Yang, S. Y. Yoon // Mat. Sci. Eng. A. 2005. Vol. 405, Ne 1/2. P. 2333–2338.
- 5. **Rahaman**, **M. N.** Ceramic processing and sintering 2nd edition / M. N. Rahaman. USA. 2003. P. 818–819, 824–828, 830–837.
- 6. **Khor, K. A.** Spark plasma reaction sintering of ZrO_2 -mullite composites from plasma spheroidized zircon/alumina powders / K. A. Khor, L. G. Yu, Y. Li, Z. L. Dong // Mat. Sci. Eng. A. Struct. Mat. Prop. Microst.: Proc. 2003. Vol. 339, M 1/2. P. 286–296.
- 7. **Горшков, В. С.** Физическая химия силикатов и других тугоплавких соединений / В. С. Горшков, В. Г. Савельев, Н. Ф. Фёдоров. М.: Высшая школа, 1988. С. 344–346.

исходной смеси компонентов стимулируют интенсивную кристаллизацию муллитовой фазы в образцах, а добавка Y_2O_3 в спекаемой исходной смеси компонентов — развитие твердого раствора кубического ZrO_2 в образцах.

Керамические образцы, полученные при спекании исходной смеси компонентов при температуре от 1250 до 1450 °C с добавкой глины, характеризуются наибольшими значениями кажущейся плотности и степени спекания. Одновременно такие образцы характеризуются более высокими значениями твердости по Виккерсу и предела прочности при сжатии по сравнению с этими показателями образцов, полученных аналогичным способом с добавкой Y₂O₃. В то же время линейная корреляция между степенью спекания и механическими свойствами (твердостью по Виккерсу и пределом прочности при сжатии) в меньшей степени выражена пля образцов, полученных при спекании исходной смеси компонентов с добавкой глины.

- 8. *Lian, G.* Superfast densification of oxide ceramics by spark plasma sintering / *G. Lian, H. Jin-Sheng, M. Hiroki, D. Sebastian* // J. Inorg. Mat. 1998. Vol. 13, № 1. P. 18–22.
- 9. **Rocha-Rongel**, E. Zirconia-mullite composites consolidated by spark plasma reaction sintering from zircon and alumina / E. Rocha-Rongel, H. Miyamoto // J. Amer. Ceram. Soc. 2005. Vol. 88. № 5. P. 1150–1157.
- 10. **Yugeswaran, S.** Transferred arc plasma processing of mullite-zirconia composite from natural bauxite and zircon sand / S. Yugeswaran, V. Selvarajan, P. Dhanasekaran, L. Lusvarghi // Vacuum. 2009. Vol. 83, No. 2. P. 353–359.
- 11. http://www. Substech.com/spark plasma sintering/scheme/htm.
- 12. **Kong, L. B.** Anizotropic grain growth of mullite in high-energy ball milling powders doped with transation metal oxides / L. B. Kong, T. S. Zhang, J. Ma, F. Boey // J. Eur. Ceram. Soc. 2003. Vol. 23, № 13. P. 2247–2256.
- 13. **Торопов, Н. А.** Диаграммы состояния силикатных систем: справочник / Н. А. Торопов, В. П. Барзаковский, Р. В. Лапин. Т. 1. М.: Наука, 1979. С. 437–439.
- 14. **Kong, L. B.** Mullite phase formation in oxide mixtures in the presence of Y_2O_3 , La_2O_3 and CeO_2 / L. B. Kong, T. S. Zhang, F. Boey, R. F. Zhang // J. All. Comp. 2004. Vol. 372, № 1/2. P. 290–299. ■

Получено 11.02.14 © А. В. Хмелёв, 2014 г.