Д. т. н. Ю. Н. Крючков (⊠)

ФГБОУ ВО «Гжельский государственный университет», пос. Электроизолятор Московской обл., Россия

УДК 666.3-127:[539.297.1+544.023.522

УТОЧНЕНИЕ МЕТОДИК ОПРЕДЕЛЕНИЯ СВОЙСТВ ПОРОШКОВОЙ КЕРАМИКИ

Уточнены методические требования к проводимым исследованиям путем обязательного указания размеров образцов для экспериментов. Отмечена необходимость использования не объемных, а массовых значений структурных параметров материалов, а также учета градиентности свойств пористых материалов. Отмечена несогласованность результатов определения параметров пористой структуры и свойств керамики разными методами из-за неточности моделей пористой среды и перколяционных эффектов. Предложена новая (более строгая) методика определения фильтрующих свойств пористой керамики по экспериментальным данным.

Ключевые слова: проницаемая керамика, пористая структура, насыпная пористость, размер частиц, радиусы капилляров, проницаемость, перколяционные эффекты, градиентность свойств.

ористые материалы, изготовленные из монофракционных керамических порошков, широко применяются для фильтрования жидкостей, газов, расплавов металлов; каталитической очистки жидкостей и газов от вредных веществ, диспергации газов в жидкостях и расплавах металлов, адсорбционной очистки жидкостей или газов и т. д. Структура пористых порошковых материалов имеет хаотичный характер. Капилляры имеют сужения (горла) и расширения (в зонах их пересечения друг с другом) [1-6]. Особенности этой структуры при исследовании проницаемых материалов часто не учитываются или слишком грубо учитываются (см., например, [6]) там, где используют не трехмерные модели пористого материала, а модели в виде непересекающихся капилляров.

В публикации [4] проанализированы методы определения распределения пор по размерам в пористых материалах и показано, что ртутная порометрия и метод вытеснения жидкости газом имеют большие погрешности в области крупных пор и что оценка распределения пор по расходу воздуха дает слишком искаженные результаты и поэтому использовать такой метод вряд ли целесообразно.

Цель настоящей работы — предложить более строгий подход к анализу пористой структу-

 \bowtie

Ю. Н. Крючков E-mail: yu-kryuchkov@yandex.ru ры материалов и определить основные требования к проводимым исследованиям.

ИССЛЕДУЕМЫЙ ДИАПАЗОН ПОРИСТОСТИ

Во многих работах (например, [6]) для моделирования и анализа структуры проницаемых материалов используется простая кубическая упаковка C пористостью $\Pi=0,476$. Такой подход часто неприемлем при обработке экспериментальных данных, так как порошковые материалы сохраняют связность только при пористости Π ниже насыпной пористости $\Pi_r=0,37$ для сферических частиц. Значение Π_r возрастает с искажением их формы, удлинением и уменьшением размера частиц, что должно быть учтено в исследованиях.

Рис. 1. Зависимость Π_r дисперсных систем от среднего размера d составляющих их частиц: 1 — аппроксимационная зависимость (1); \bigcirc — по экспериментальным данным [2]; \square — по данным аналитического расчета [9]

Значения насыпной плотности дисперсных систем $V_r = 1 - \Pi_r$ хорошо аппроксимируются следующей зависимостью [3]:

$$\Pi_r = 0.1(0.001D/D_0)^{-0.19}$$
 при $D_0 = 10^{-3}$ м, $10^{-3} > D > 6.5 \cdot 10^{-6}$; $\Pi_r = 0.37$ при $D \ge 10^{-3}$; $\Pi_r = 0.97$ при $D \le 6.5 \cdot 10^{-3}$. (1)

Из рис. 1 видно, что полученная зависимость удовлетворительно аппроксимирует экспериментальные данные. Определяя экспериментально насыпную пористость или плотность керамического порошка, можно учесть снижение ее в граничном со стенкой и дном стандартного цилиндра слое [7].

При уплотнении пористость Π , а значит, и проницаемость K материала начинают снижаться (рис. 2) и становятся равными нулю при $\Pi = 0.08 \div 0.09$ у материалов из монофракционных

Рис. 2. Зависимость относительной открытой пористости Π_0/Π от общей пористости Π образцов

сферических порошков и при $\Pi=0.12\div0.13$ у материалов из полифракционных порошков и природных материалов [5].

ПРЕДСТАВЛЕНИЕ РЕЗУЛЬТАТОВ

Во многих научных работах используются не объемные, а массовые значения структурных параметров (например, [6, 8]). Определение удельной поверхности S_0 в м²/г вместо м²/м³ или отнесение структурных параметров не к пористости, а к плотности материала снижает наглядность результатов и затрудняет сравнение структуры разных материалов (например, корундовых с кварцевыми).

Градиентность свойств пористых материалов

При исследовании проницаемых материалов не принято указывать размеры экспериментальных образцов. Так, в публикации [2] проанализировано влияние размера и формы кристаллов электроплавленого корунда на микроструктуру

и проницаемость пористой керамики, но не указаны размеры исследуемых образцов. Даже при определении прочности пористых и непористых материалов она с уменьшением размеров образцов существенно возрастает, так как снижается количество крупных дефектов в образце. Кроме того, меняется плотность материала от торцов к центру по высоте (при прессовании образцов) или повышается плотность поверхностного слоя образцов (при экструзионном формовании вследствие затирки поверхностных пор).

Покажем, что размеры и форма образцов существенно влияют на измеряемые параметры пористой структуры материала и размеры исследуемых образцов необходимо указывать.

На рис. З показаны результаты моделирования процесса газопереноса в пористых материалах при перепаде давления [3]. Видно, что чем толще материал, тем меньше вклад в течение газа через него крупных пор. Течение газа по самым крупным порам при повышении толщины материала (измеряется умножением размера частиц на количество слоев N из них в плоском образце) почти прекращается более мелкими порами, которые случайным образом перекрывают крупные поры. По кривой 1 течение газа через освобожденные от жидкости поры прекращается при толщине материала, большей 4D (D — диаметр частиц, из которых состоит материал), а работают лишь 15 % пор (наиболее крупных). По кривой 2 течение газа через поры, составляющие 20 % всего количества пор, пре-

Рис. 3. Степень прохождения газа q по наиболее крупным порам через слои N решетки, моделирующей пористую структуру порошкового материала, в зависимости от используемой доли крупных пор в их распределении по размерам: 1-15 % самых крупных пор всего их количества; 2-20 % самых крупных пор всего их количества; 3-22 % самых крупных пор всего их количества; 4-24,7 % крупных пор (соответствует среднему радиусу пор в материале) и газ проходит через любую толщину материала

кращается при толщине, большей 8*D*. По кривой *3* течение газа через поры, составляющие 22 % всего количества пор, прекращается при толщине, большей 13*D*. По кривой *4* через поры, составляющие 24,7 % всего количества пор, газ по этим порам проходит через любую толщину материала.

Для увлажненных материалов с возрастанием их толщины средний радиус пор, по которым течет газ, снижается. Из рис. З следует вывод о важности учета размеров и геометрии (формы) исследуемых образцов. Это подтверждается С. С. Бартеневым [10, 11], который указывает, что данные ртутной порометрии могут различаться в 2–4 раза.

Несогласованность методов определения параметров структуры

Разные методы определения параметров пористой структуры плохо согласуются между собой и слабо коррелируют с реальными свойствами проницаемых материалов [10] из-за неточности моделей пористой среды и перколяционных эффектов.

Из-за влияния перколяционных эффектов методы газожидкостной и ртутной порометрии дают искаженные результаты распределения пор по размерам [4]. Следовательно, эти методы целесообразнее использовать только для оценки гидравлических характеристик пористых проницаемых материалов и контроля производственных процессов. Метод оптической порометрии охватывает более широкий диапазон размеров пор, так как распределение пор определяется по их средним сечениям (рис. 4). Смещение размеров пор в область более мелких пор при оценке параметров пористой структуры методами ртутной и газожидкостной порометрии связано не только с тем, что они определяют значения по самым узким сечениям (горлам) пор, но и с перколяционным эффектом [13, 14].

Перколяционный эффект проявляется в том, что газ начинает проходить через образец только при освобождении от жидкости критического объема пор разных размеров. Аналогично и с ртутной порометрией: до 30 % наиболее крупных пор не определяется. На ступенях давления газа (ртути) часть жидкости не вытесняется (поры не заполняются ртутью), если эти поры окружены более мелкими порами, капиллярное давление в которых выше давления газа или ртути. Поэтому разрыв со стороны крупных пор при оценке параметров пористой структуры методами ртутной или газожидкостной порометрии и оптической порометрии значителен.

Положительным фактором метода газожидкостной порометрии по расходу газа является возможность определения среднего (гидравли-

Рис. 4. Распределение пор по размерам порошка с размерами частиц менее 0,16 мм [4]: 1 — метод ртутной порометрии; 2 — метод газожидкостной порометрии по расходу газа; 3 — метод оптической порометрии

Рис. 5. Типичная газожидкостная порограмма: прямая (1) и обратная (2) ветви

ческого) радиуса $P_{\rm cp}$ и по прямой, и по обратной ветви порограммы (рис. 5) [12].

Способы определения средней величины пор методом газожидкостной порометрии, широко используемые в исследованиях, не всегда оправданны. Так, методом определения величины пор проницаемых порошковых материалов (ГОСТ 26849-86) измеряют давление, необходимое для выделения воздуха на поверхности полностью насыщенного жидкостью образца первого пузырька воздуха (соответствует критическому давлению $P_{\rm cr}$, см. рис. 5), при определении максимальной величины пор. Давление же, соответствующее началу выделения воздуха по всей поверхности образца (соответствует промежуточному давлению между $P_{\rm cr}$ и $P_{\rm max}$, см. рис. 5) при определении средней величины пор, намного выше реального значения $P_{\rm cp}$. Поэтому средняя величина пор (см. рис. 5), соответствующая давлению $P_{\rm cp}$, значительно меньше максимальной величины пор по ГОСТ 26849–86, соответствующей давлению $P_{\rm cp}$. Таким образом, методику по ГОСТ 26849–86 для определения средней величины пор нельзя считать верной.

Новая методика определения фильтрующих свойств пористой керамики

В настоящей работе предлагается более строгая методика определения фильтрующих свойств пористой керамики:

- сначала экспериментально по расходу газа или жидкости через образец определяется проницаемость материала K, затем по обратной кривой в газожидкостной порометрии (по $P_{\rm cp}$) определяется средний размер пор r;
- далее используется уравнение Пуазейля для проницаемости материала *К* [13], которое описывает ламинарное течение жидкости или газа в пористом материале, в следующем виде:

$$K = \Pi r^2 / (8\xi), \tag{2}$$

где Π — пористость материала; ξ — коэффициент извилистости капилляров;

– после преобразования уравнения (2) определяется ξ :

$$\xi = \Pi r^2 / (8K). \tag{3}$$

Представляет интерес сравнение коэффициента извилистости капилляров по экспериментальным данным и по аналитическому уравнению [9]:

$$\xi = 1/[\Pi(1 - \ln\Pi)]. \tag{4}$$

В таблице в качестве примера использования предлагаемой методики приведены результаты расчета ξ по экспериментальным средним размерам частиц и K [14] для спеченного монофракционного материала в сравнении с ξ по уравнению (4). Радиус капилляров был определен методом газожидкостной порометрии, а проницаемость — по расходу газа при ламинарном течении.

Из таблицы видно, что расчеты ξ по экспериментальными данным и по предлагаемой методике удовлетворительно согласуются с расчетами

Параметры структуры пористых порошковых материалов из частиц разных размеров *D*

The representation of the second participation of the seco					
<i>D</i> , мкм	П	2r, мкм [14]	<i>К</i> , мкм ² [14]	ξ по уравнению	
				(3)	(4)
700	0,41	195	254	1,92	1,29
554	0,40	161	154,1	2,10	1,30
442	0,39	117	96,2	1,73	1,32
360	0,38	92	62,1	1,62	1,34
277	0,37	59,0	33,0	1,36	1,22
221	0,35	43	17,6	1,15	1,39
171	0,33	33	14,8	0,76	1,44
139	0,32	30	6,6	1,36	1,46

по аналитическому уравнению. Кроме того, экспериментальные данные, полученные по предлагаемой методике и рассчитанные по уравнению (3), удовлетворительно согласуются друг с другом.

ЗАКЛЮЧЕНИЕ

- 1. Так как проницаемость K материалов близка к нулю при $\Pi=0.08\div0.13$, то аналитическое моделирование в области $\Pi=15$ % слишком грубое и следует использовать только экспериментальные данные.
- 2. Для наглядности результатов и облегчения сравнительного анализа структуры и прочности разных материалов лучше использовать объемные (например, пористость), а не массовые (например, плотность) значения структурных параметров.
- 3. В исследованиях необходимо учитывать градиентность свойств пористых материалов.
- 4. Разные методы определения параметров пористой структуры не согласуются между собой и слабо коррелируют с реальными свойствами проницаемых материалов из-за неточности моделей пористой среды и влияния перколяционных эффектов.
- 5. Предложена новая (более строгая) методика определения фильтрующих свойств пористой керамики по экспериментальным данным.

Библиографический список

- 1. **Красный, Б. Л.** Влияние размера и формы кристаллов электроплавленого корунда на микроструктуру и проницаемость пористой керамики / Б. Л. Красный, В. П. Тарасовский, А. Б. Красный, А, М. Усс // Новые огнеупоры. 2009. № 12. С. 20–24.
- 2. **Дульнев, Г. Н.** Теплопроводность смесей и композиционных материалов / Г. Н. Дульнев, Ю. П. Заричняк. Л. : Энергия, 1974. 264 с.
- 3. **Крючков, Ю. Н.** Структурные и перколяционные параметры пористых и дисперсных порошковых систем / Ю. Н. Крючков // Теор. основы хим. технологии. 2001. T. 35, N 6. C. 617-626.
- 4. **Крючков, Ю. Н.** Особенности определения параметров пористой структуры керамических материалов / Ю. Н. Крючков // Новые огнеупоры. 2019. № 5. С. 117, 118.
- 5. **Красный, Б.** Л. Количественный анализ поровой структуры керамики с помощью компьютерного анализа РЭМ-изображения / Б. Л. Красный, В. П. Тарасовский, А. Б. Красный, А. Ю. Омаров // Новые огнеупоры. 2013. \mathbb{N} 8. С. 40–44.
- 6. **Гурьев, В. В.** Определение гидравлического радиуса пористой структуры керамических материалов / В. В. Гурьев, В. И. Никитин, В. А. Кофанов // Стекло и керамика. 2016. 1000 7. C. 1000 C. 1
- 7. **Крючков, Ю. Н.** Плотность свободнонасыпных порошковых материалов / Ю. Н. Крючков // Стекло и керамика. 1986. № 9. С. 25, 26.
- 8. **Кругляков, В. Ю.** Влияние состава и свойств формовочных масс на характеристики корундовых блоч-

ных носителей / В. Ю. Кругляков, Е. Ф. Сутормина, H. А. Куликовская [и др.] // Стекло и керамика. — 2017. — № 11. — С. 11–17.

- 9. **Крючков, Ю. Н.** Структура и свойства гетерогенных пористых, композиционных материалов/*Ю. Н. Крючков*. Saarbruken: LAP Lambert, Academic Pablishing, 2011. 306 с.
- 10. **Бартенев С. С.** Коэффициент фильтрации и распределение пор по размерам в недеформируемых пористых материалах. 3. Ламинарное течение газов через реальные пористые материалы / С. С. Бартенев // Журнал физической химии. 1975. Т. 49, № 7. С. 1757—1760.
- 11. **Бартенев, С. С.** Коэффициент фильтрации и распределение пор по размерам в недеформируемых пористых материалах. 4. Расчет коэффициента филь-

- трации пористых материалов / С. С. Бартенев // Журнал физической химии. 1975. Т. 49, № 7. С. 1761-1764.
- 12. **Кривобок, С. М.** Некоторые особенности течения газа через смоченные пористые перегородки / С. М. Кривобок, В. Д. Волгин // Инж.-физ. журн. 1979. Т. 37, № 3. С. 443-448.
- 13. **Хейфец, Л. И.** Многофазные процессы в пористых средах / Л. И. Хейфец, А. В. Неймарк. М. : Химия, 1982. 320 с.
- 14. Пористые проницаемые материалы : справ. изд. ; под ред. С. В. Белова. М. : Металлургия, 1987. 335 с. ■

Получено 08.10.21 © Ю. Н. Крючков, 2022 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

КЕРАМИКА В ЕВРОПЕ 2022

XVII конференция и выставка ECerS (ECerS XVII), 9-я Международная керамическая конференция (ICC9) и конференция Electroceramics XVIII запланированы как совместная конференция в г. Кракове, Польша, с 10 по 14 июля 2022 г.

CERAMICS IN EUROPE 2022

Kraków 10th-14th July 2022

Для получения дополнительной информации посетите веб-сайт конференции:

www.ceramicsineurope2022.org

№ 1 2022 **Hobbie Otheynopbi** ISSN 1683-4518 **47**