Д. т. н. **В. В. Кузин** (🖾), д. т. н. **С. Н. Григорьев**, к. т. н. **М. А. Волосова**

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

УПК 666.3:546.28'1711:621.914.22

СИСТЕМНЫЙ АНАЛИЗ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПОВЕРХНОСТНОГО СЛОЯ ШЛИФОВАННОЙ Si_3N_4 —TiC-КЕРАМИКИ*

Систематизированы результаты силового, теплового и комбинированного анализов напряженнодеформированного состояния поверхностного слоя шлифованной Si₃N₄-TiC-керамики. Взаимосвязи, выявленные при упорядочении данных численных экспериментов, рекомендованы для создания инновационных инструментов из нитридкремниевой керамики с учетом изменения структуры ее поверхностного слоя и адаптирования к его разрушению под действием эксплуатационных нагрузок.

Ключевые слова: системный анализ, Si_3N_4 –TiC-керамика, поверхностный слой, интенсивность напряжений, статистическая характеристика, компьютерная инженерия.

ВВЕДЕНИЕ

ешение актуальной проблемы режущих инструментов из Si_3N_4 -ТiС-керамики, заключающейся в установлении закономерностей износа при контакте с заготовкой, требует особого внимания к физическим процессам в их поверхностном слое (ПС) [1, 2]. В публикациях [3–8] показано, что ПС Si₃N₄-TiC-керамики после шлифования имеет оригинальную многослойную структуру с большим числом разнообразных дефектов и специфическую морфологию поверхности. Этот ПС, сформировавшийся при заточке инструмента, значительно влияет на условия контактного взаимодействия с обрабатываемой заготовкой, а также на соотношение между адгезионной и деформационной составляющими силы трения [9, 10]. Результаты исследования инструментов из Si₃N₄-TiC-керамики свидетельствуют о существенном влиянии характеристик ПС на интенсивность их износа, особенно на начальном этапе эксплуатации [11, 12].

Более неоднозначной является взаимосвязь условий нагружения инструмента, зависящих от параметров режима резания, с характером разрушения их ПС [13, 14]. Экспериментально выявить природу этой взаимосвязи не удается из-за

* Статья является заключительной в цикле публикаций [17–19].

 \bowtie

B. B. Кузин E-mail: dr.kuzinvalery@yandex.ru отсутствия необходимых знаний о роли внешнего нагружения в деформации ПС шлифованной Si_3N_4 –TiC-керамики. Однако обоснованно подойти к объяснению этой взаимосвязи позволили методология компьютерной инженерии ПС шлифованной керамики [15, 16] и совокупность результатов силового, теплового и комбинированного анализов Si_3N_4 –TiC-керамики [17–19].

Цель настоящей работы — систематизировать ранее полученные результаты расчетов интенсивности напряжений о; при силовом, тепловом и комбинированном анализах и на этой основе выявить взаимосвязь вида нагружения с напряженным состоянием ПС шлифованной Si_3N_4 —TiC-керамики.

МЕТОДИКА ИССЛЕДОВАНИЯ

Системный анализ выполнен с использованием четырех статистических характеристик (наименьшие $\sigma_{\text{мин}}$, наибольшие $\sigma_{\text{макс}}$, средние $\sigma_{\text{ср}}$ и стандартное отклонение s для σ_i), значения которых были определены в результате силового (СА), теплового (ТА) и комбинированного (КА) анализов ПС керамики [17-19]. Эти результаты показаны в виде 24 столбчатых диаграмм, разделенных на четыре группы для каждой статистической характеристики. Каждая группа включает 6 диаграмм для поверхности зерна, примыкающей к межзеренной фазе (С1); межзеренной фазы, примыкающей к зерну (С2); межзеренной фазы, примыкающей к матрице (СЗ); матрицы, примыкающей к межзеренной фазе (С4); для поверхностей зерна, межзеренной фазы и матрицы, примыкающих к слою (С5); для поверхности слоя, примыкающего к зерну, межзеренной фазе и матрице (C6). Каждая диаграмма содержит 4 блока для следующих систем шлифованной Si_3N_4 —TiC-керамики: № 1 Si_3N_4 (зерно) — MgO (межзеренная фаза)— Si_3N_4 (матрица) / Si_3N_4 (слой), № 2 Si_3N_4 —Y $_2O_3$ — Si_3N_4 /TiC, № 3 TiC—Y $_2O_3$ — Si_3N_4 /Si $_3N_4$, № 4 TiC—Y $_2O_3$ — Si_3N_4 /TiC.

Степень влияния разных видов нагружения на статистические характеристики оценена на основе анализа характера их изменения в каждом блоке и значений коэффициента K_{ijl} , где i—номер отношения видов анализа (1— TA / CA, 2— KA / CA, 3— KA / TA); j—номер статистической характеристики (1— $\sigma_{\text{мин}}$, 2— $\sigma_{\text{макс}}$, 3— $\sigma_{\text{ср}}$, 4—s); l— обозначение поверхности (1-6— поверхности C1-C6 соответственно). Например, коэффициент K_{112} определяет значение отношения $\sigma_{\text{мин}}$ при TA к $\sigma_{\text{мин}}$ при CA в поверхности C2.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

На рис. 1–4 показаны диаграммы влияния разных видов нагружения на статистические характеристики в поверхностях C1–C6 ПС керамики четырех систем. Общий анализ этих диаграмм показал, что степень влияния силового нагружения на $\sigma_{\text{мин}}$, $\sigma_{\text{макс}}$ и $\sigma_{\text{ср}}$ оказалась наибольшей в 38 блоках (из 72), комбинированного — в 30 блоках, теплового — в четырех блоках. Наибольшее влияние на s оказывает комбинированное нагружение; доминирование этого вида нагружения проявляется в 13 блоках (из 24). Силовое на-

гружение оказывает превалирующее влияние на s в восьми блоках, тепловое — в трех.

Последовательно проанализируем выявленные взаимосвязи для каждой статистической характеристики.

Влияние вида нагружения на $\sigma_{\text{мин}}$ показано на рис. 1. Видно, что силовое нагружение оказывает превалирующее влияние на $\sigma_{\text{мин}}$ в 15 блоках (из 24), комбинированное нагружение — в 9 блоках.

В поверхности C1 наибольшие $\sigma_{\text{мин}}$ зафиксированы в системах № 1 и 2 при силовом нагружении (см. рис. 1, a), системах № 3 и 4 — при комбинированном. Уменьшение $\sigma_{\text{мин}}$ в системах № 1 и 2 происходит в последовательности $CA \rightarrow KA \rightarrow TA$, системах № 3 и 4 — в последовательности $KA \rightarrow CA \rightarrow TA$. Значения коэффициентов для этой поверхности: K_{111} 0,2, 0,37, 0,24 и 0,52; K_{211} 0,78, 0,55, 1,33 и 1,09; K_{311} 3,92, 1,47, 5,46 и 2,12 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C2 наибольшие $\sigma_{\text{мин}}$ зафиксированы в системах № 1, 3 и 4 при комбинированном нагружении (см. рис. 1, δ), в системе № 2 — при силовом. Уменьшение $\sigma_{\text{мин}}$ в системах № 1, 3 и 4 происходит в последовательности $KA \to CA \to TA$, в системе № 2 — в последовательности $CA \to KA \to TA$. Значения коэффициентов для этой поверхности: K_{112} 0,86, 0,82, 0,98 и 0,76; K_{212} 1,09, 0,99, 1,33 и 1,07; K_{312} 1,27, 1,2, 1,35 и 1,41 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C3 наибольшие $\sigma_{\text{мин}}$ зафиксированы в системах № 1, 2 и 4 при силовом нагружении

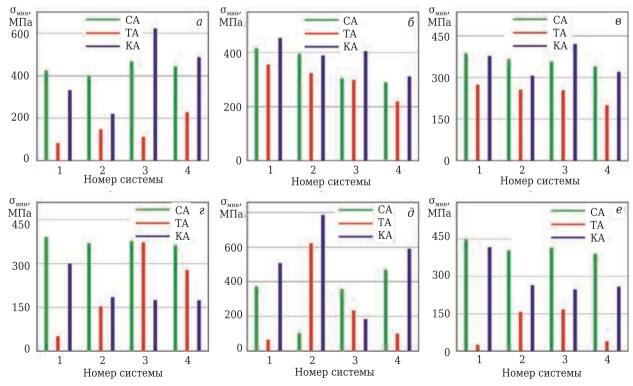


Рис. 1. Влияние вида нагружения на $\sigma_{\text{мин}}$ в поверхностях C1 (a), C2 (б), C3 (в), C4 (г), C5 (д) и C6 (е) ПС шлифованной Si_3N_4 —ТіС-керамики систем № 1–4 при CA, ТА и KA

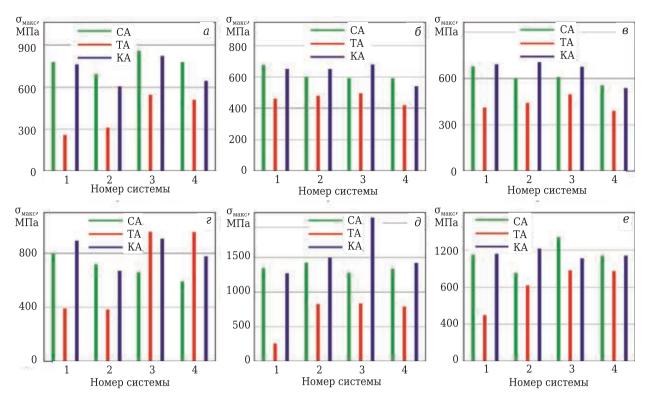


Рис. 2. Влияние вида нагружения на $\sigma_{\text{макс}}$ в поверхностях C1 (a), C2 (б), C3 (в), C4 (г), C5 (д) и C6 (е) ПС шлифованной Si_3N_4 —ТіС-керамики систем № 1—4 при СА, ТА и КА

(см. рис. 1, в), в системе № 3 — при комбинированном. Уменьшение $\sigma_{\text{мин}}$ в системах № 1, 2 и 4 происходит в последовательности СА \rightarrow КА \rightarrow ТА, в системе № 3 — в последовательности КА \rightarrow СА \rightarrow ТА. Значения коэффициентов для этой поверхности: K_{113} 0,71, 0,7, 0,71 и 0,59; K_{213} 0,98, 0,83, 1,18 и 0,94; K_{313} 1,37, 1,19, 1,65 и 1,59 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C4 керамики всех систем наибольшие $\sigma_{\text{мин}}$ зафиксированы при силовом нагружении (см. рис. 1, г). Уменьшение $\sigma_{\text{мин}}$ в системах № 1, 2 уменьшается в последовательности СА \rightarrow КА \rightarrow ТА, в системе № 3 и 4 — в последовательности СА \rightarrow ТА \rightarrow КА. Значения коэффициентов для этой поверхности: K_{114} 0,13, 0,41, 0,99 и 0,77; K_{214} 0,77, 0,5, 0,46 и 0,48; K_{314} 5,77, 1,21, 0,47 и 0,62 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C5 наибольшие $\sigma_{\text{мин}}$ зафиксированы в системах № 1, 2 и 4 при комбинированном нагружении, в системе № 3 — при силовом (см. рис. 1, ∂). Уменьшение $\sigma_{\text{мин}}$ в системах № 1 и 4 происходит в последовательности $KA \to CA \to TA$, в системе № 2 — в последовательности $KA \to TA \to CA$, в системе № 3 — в последовательности $CA \to TA \to KA$. Значения коэффициентов для этой поверхности: K_{115} 0,18, 6,01, 0,66 и 0,21; K_{215} 1,36, 7,58, 0,53 и 1,25; K_{315} 7,71, 1,26, 0,8 и 5,86 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C6 наибольшие $\sigma_{\text{мин}}$ зафиксированы во всех системах при силовом нагружении (см. рис. 1, e), причем уменьшение $\sigma_{\text{мин}}$ в них происходит в последовательности $CA \to KA \to TA$. Значения коэффициентов для этой поверхности: K_{116}

0,06, 0,39, 0,4 и 0,1; K_{216} 0,93, 0,65, 0,6 и 0,66; K_{316} 16,04, 1,68, 1,47 и 6,62 для систем № 1, 2, 3 и 4 соответственно.

На рис. 2 показано влияние вида нагружения на $\sigma_{\text{макс}}$. Видно, что силовое и комбинированное нагружения одинаково влияют на $\sigma_{\text{макс}}$ (по 11 блоков), а наибольшее влияние теплового нагружения проявляется в двух блоках.

В поверхности C1 всех систем наибольшие $\sigma_{\text{макс}}$ зафиксированы при силовом нагружении (см. рис. 2, a), причем уменьшение $\sigma_{\text{макс}}$ происходит в последовательности $\text{CA} \rightarrow \text{KA} \rightarrow \text{TA}$. Значения коэффициентов для этой поверхности: K_{121} 0,33, 0,45, 0,64 и 0,66; K_{221} 0,98, 0,88, 0,96 и 0,83; K_{321} 2,95, 1,96, 1,5 и 1,26 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C2 наибольшие $\sigma_{\text{макс}}$ зафиксированы в системах № 1 и 4 при силовом нагружении (см. рис. 2, δ), а в системах № 2 и 3 — при комбинированном. Уменьшение $\sigma_{\text{макс}}$ в системах № 1 и 4 происходит в последовательности $CA \rightarrow KA \rightarrow TA$, в системах № 2 и 3 — в последовательности $KA \rightarrow CA \rightarrow TA$. Значения коэффициентов для этой поверхности: K_{122} 0,68, 0,8, 0,84 и 0,71; K_{222} 0,96, 1,08, 1,15 и 0,91; K_{322} 1,41, 1,35, 1,37 и 1,29 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C3 наибольшие $\sigma_{\text{макс}}$ зафиксированы в системах № 1–3 (см. рис. 2, в). Уменьшение $\sigma_{\text{макс}}$ в системах № 1–3 происходит в последовательности $KA \to CA \to TA$, в системе № 4 — в последовательности $CA \to KA \to TA$. Значения коэффициентов для этой поверхности: K_{123}

0,61, 0,73, 0,81 и 0,7; K_{223} 1,02, 1,18, 1,11 и 0,96; K_{323} 1,68, 1,61, 1,36 и 1,38 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C5 наибольшие значения $\sigma_{\text{макс}}$ зафиксированы в системе № 1 при силовом нагружении, в системах № 2–4 — при комбинированном (см. рис. 2, ∂). Уменьшение $\sigma_{\text{макс}}$ в системе № 1 происходит в последовательности $CA \rightarrow KA \rightarrow TA$, в системах № 2–4 — в последовательности $KA \rightarrow CA \rightarrow TA$. Значения коэффициентов для этой поверхности: K_{125} 0,19, 0,58, 0,65 и 0,59; K_{225} 0,95, 1,05, 1,62 и 1,06; K_{325} 5, 1,82, 2,49 и 1,79 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C6 наибольшие $\sigma_{\text{макс}}$ зафиксированы в системах № 1, 2 и 4 при комбинированном нагружении, в системе № 3 — при силовом (см. рис. 2, e). Уменьшение $\sigma_{\text{макс}}$ в системах № 1, 2 и 4 происходит в последовательности $KA \to CA \to TA$, системе № 3 — в последовательности $CA \to TA$

 \rightarrow KA \rightarrow TA. Значения коэффициентов для этой поверхности: K_{126} 0,43, 0,86, 0,73 и 0,8678; K_{226} 1,01, 1,27, 1, 0,83 и 1; K_{326} 2,33, 1,48, 1,13 и 1,17 для систем № 1, 2, 3 и 4 соответственно.

Влияние вида нагружения на σ_{cp} показано на рис. 3. Видно, что силовое нагружение оказывается приоритетным для σ_{cp} в 12 блоках, комбинированное нагружение — в 10 блоках, тепловое — в двух блоках.

В поверхности C1 наибольшие σ_{cp} зафиксированы в системах № 1, 2 и 4 при силовом нагружении, в системе № 3 — при комбинированном (см. рис. 3, a). Уменьшение σ_{cp} происходит в системах № 1, 2 и 4 в последовательности $CA \to KA \to TA$, в системе № 3 — в последовательности $KA \to CA \to TA$. Значения коэффициентов для этой поверхности: K_{131} 0,34, 0,46, 0,73 и 0,68; K_{231} 0,86, 0,68, 1,12 и 0,96; K_{331} 2,54, 1,48, 1,54 и 1,41 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C2 наибольшие $\sigma_{\rm cp}$ зафиксированы в системах № 1–3 при комбинированном нагружении, в системе № 4 — при силовом (см. рис. 3, б). Уменьшение $\sigma_{\rm cp}$ происходит в системах № 1–3 в последовательности $KA \to CA \to TA$, в системе № 4 — в последовательности $CA \to KA \to TA$. Значения коэффициентов для этой поверхности: K_{132} 0,82, 0,85, 0,89 и 0,77; K_{232} 1,1, 1,08, 1,17 и 0,94; K_{332} 1,35, 1,28, 1,31 и 1,22 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C3 наибольшие σ_{cp} зафиксированы в системах № 1 и 3 при комбинирован-

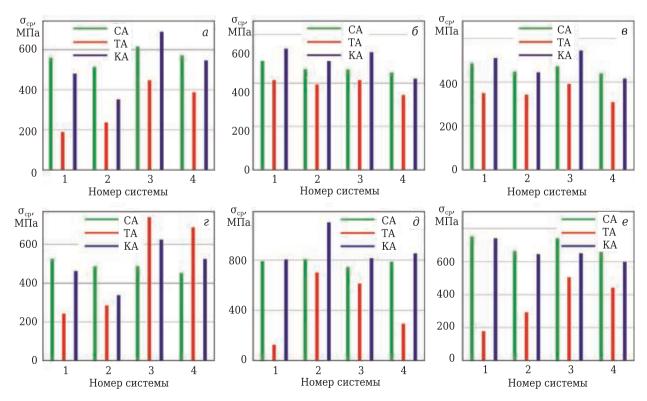


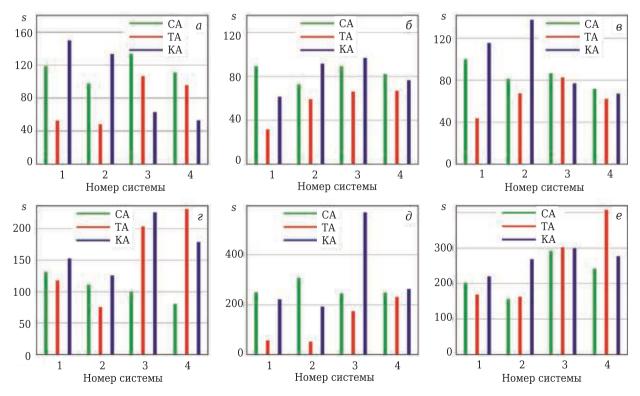
Рис. 3. Влияние вида нагружения на σ_{cp} в поверхностях C1 (a), C2 (b), C3 (b), C4 (c), C5 (b) и C6 (c) ПС шлифованной Si_3N_4 —ТіС-керамики систем № 1–4 при CA, ТА и KA

ном нагружении, в системах № 2 и 4 — при силовом (см. рис. 3, e). Уменьшение σ_{cp} в системах № 1 и 3 происходит в последовательности $KA \rightarrow CA \rightarrow TA$, в системах № 2 и 4 — в последовательности $CA \rightarrow KA \rightarrow TA$. Значения коэффициентов для этой поверхности: K_{133} 0,72, 0,77, 0,83 и 0,7; K_{233} 1,05, 0,99, 1,15 и 0,94; K_{333} 1,46, 1,30, 1,39 и 1,35 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C4 наибольшие $\sigma_{\rm cp}$ зафиксированы в системах № 1 и 2 при силовом нагружении, в системах № 3 и 4 — при тепловом (см. рис. 3, $\it e$). Уменьшение $\sigma_{\rm cp}$ происходит системах № 1 и 2 в последовательности $\rm CA \rightarrow \rm KA \rightarrow \rm TA$, в системах № 3 и 4 — в последовательности $\rm TA \rightarrow \rm KA \rightarrow \rm CA$. Значения коэффициентов для этой поверхности: $\it K_{134}$ 0,46, 0,59, 1,52 и 1,53; $\it K_{234}$ 0,88, 0,69, 1,28 и 1,16; $\it K_{334}$ 1,89, 1,18, 0,84 и 0,76 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C5 наибольшие $\sigma_{\rm cp}$ зафиксированы во всех системах при комбинированном нагружении (см. рис. 3, ∂), причем уменьшение $\sigma_{\rm cp}$ происходит в последовательности $KA \rightarrow CA \rightarrow TA$. Значения коэффициентов для этой поверхности: K_{135} 0,16, 0,87, 0,82 и 0,37; K_{235} 1,02, 1,36, 1,09 и 1,08; K_{335} 6,34, 1,5, 1,33 и 2,91 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C6 наибольшие σ_{cp} зафиксированы во всех системах при силовом нагружении (см. рис. 3, e), а уменьшение σ_{cp} происходит в последовательности $CA \rightarrow KA \rightarrow TA$. Значения коэффициентов для этой поверхности: K_{136} 0,24, 0,44,


0,68 и 0,67; K_{236} 0,98, 0,97, 0,88 и 0,91; K_{336} 4,15, 2,18, 1,29 и 1,35 для систем № 1, 2, 3 и 4 соответственно.

Влияние вида нагружения на *s* показано на рис. 4. Видно, что наибольшее влияние на *s* оказывает комбинированное нагружение; доминирование этого вида нагружения проявляется в 13 блоках (из 24). Силовое нагружение оказывает превалирующее влияние на *s* в восьми блоках, тепловое — в трех.

В поверхности C1 наибольшие s зафиксированы в системах № 1 и 2 при комбинированном нагружении, в системах № 3 и 4 — при силовом (см. рис. 4, a). Уменьшение s в системах № 1 и 2 происходит в последовательности $KA \rightarrow CA \rightarrow TA$, в системах № 3 и 4 — в последовательности $CA \rightarrow TA \rightarrow KA$. Значения коэффициентов для этой поверхности: K_{141} 0,44, 0,49, 0,8 и 0,86; K_{241} 1,26, 1,37, 0,47 и 0,47; K_{341} 2,84, 2,76, 0,59 и 0,55 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C2 наибольшие s зафиксированы в системах № 1 и 4 при силовом нагружении, в системах № 2 и 3 — при комбинированном (см. рис. 4, δ). Уменьшение s в системах № 1 и 4 происходит в последовательности $CA \rightarrow KA \rightarrow TA$, в системах № 2 и 3 — в последовательности $KA \rightarrow CA \rightarrow TA$. Значения коэффициентов для этой поверхности: K_{142} 0,35, 0,82, 0,74 и 0,82; K_{242} 0,69, 1,26, 1,08 и 0,93; K_{342} 1,94, 1,55, 1,46 и 1,14 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C3 наибольшие s зафиксированы в системах № 1 и 2 при комбинированном

Рис. 4. Влияние вида нагружения на *s* в поверхностях *C1* (*a*), *C2* (б), *C3* (в), *C4* (г), *C5* (д) и *C6* (е) ПС шлифованной Si₃N₄−TiC-керамики систем № 1–4 при CA, ТА и КА

нагружении, в системах № 3 и 4 — при силовом (см. рис. 4, θ). Уменьшение s в системах № 1 и 2 происходит в последовательности $KA \to CA \to TA$, в системе № 3 — в последовательности $CA \to TA \to KA$, в системе № 4 — в последовательности $CA \to KA \to TA$. Значения коэффициентов для этой поверхности: K_{143} 0,44, 0,83, 0,96 и 0,87; K_{243} 1,16, 1,7, 0,89 и 0,93; K_{343} 2,65, 2,04, 0,93 и 1,08 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C4 наибольшие s зафиксированы в системах № 1, 2 и 3 при комбинированном нагружении, в системе № 4 — при тепловом (см. рис. 4, s). Уменьшение s в системах № 1 и 2 происходит в последовательности $KA \rightarrow CA \rightarrow TA$, в системе № 3 — в последовательности $KA \rightarrow TA \rightarrow CA$, в системе № 4 — в последовательности $TA \rightarrow KA \rightarrow CA$. Значения коэффициентов для этой поверхности: K_{144} 0,9, 0,68, 2,04 и 2,87; K_{244} 1,16, 1,13, 2,27 и 2,22; K_{344} 1,3, 1,66, 1,11 и 0,77 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C5 наибольшие s зафиксированы в системах № 1 и 2 при силовом нагружении, в системах № 3 и 4 — при комбинированном (см. рис. 4, ∂). Уменьшение s в системах № 1 и 2 происходит в последовательности $CA \to KA \to TA$, в системах № 3 и 4 — в последовательности $KA \to CA \to TA$. Значения коэффициентов для этой поверхности: K_{145} 0,23, 0,17, 0,71 и 0,93; K_{245} 0,88, 0,62, 2,32 и 1,06; K_{345} 3,9, 3,69, 3,27 и 1,14 для систем № 1, 2, 3 и 4 соответственно.

В поверхности C6 наибольшие s зафиксированы в системах № 1 и 2 при комбинированном нагружении, в системах № 3 и 4 — при тепловом (см. рис. 4, e). Уменьшение s в системах № 1 и 2

Библиографический список

- 1. **Kuzin, Valery V.** A new generation of ceramic tools / Valery V. Kuzin, Sergey N. Grigor'ev, David R. Burton [et al.] // Proceedings of the 10th International Conference on Manufacturing Research ICMR 2012. 2012. P. 523-528.
- 2. *Grigoriev, S. N.* Prospects for tools with ceramic cutting plates in modern metal working / *S. N. Grigoriev, V. V. Kuzin* // Glass and Ceramics. 2011. Vol. 68, № 7/8. P. 253–257.
- **Григорьев, С. Н.** Перспективы применения инструментов с керамическими режущими пластинами в современной металлообработке / С. Н. Григорьев, В. В. Кузин // Стекло и керамика. 2011. № 8. С. 17–22.
- 3. **Sun, J.** Analysis of surface morphology and roughness on Si_3N_4 ceramic grinding / *H. Wang, Y. Wu, P. Zhou* [et al.] // Academic Journal of Manufacturing Engineering. 2018. Vol. 16, \mathbb{N} 3. P. 20–28.
- 4. **Kuzin**, **V. V.** Technological aspects of diamond grinding of the nitride ceramics / V. V. Kuzin // Russ. Eng. Res. 2004. Vol. 24, N 1. P. 23–28.
- **Кузин, В. В.** Технологические особенности алмазного шлифования деталей из нитридной керамики / В. В. Кузин // Вестник машиностроения. 2004. № 1. С. 37–41.

происходит в последовательности $KA \to CA \to TA$, в системах № 3 и 4 — в последовательности $TA \to KA \to CA$. Значения коэффициентов для этой поверхности: K_{146} 0,83, 1,05, 1,04 и 1,69; K_{246} 1,08, 1,72, 1,03 и 1,15; K_{346} 1,3, 1,65, 0,99 и 0,68 для систем № 1, 2, 3 и 4 соответственно.

ЗАКЛЮЧЕНИЕ

С использованием систематизированных результатов расчетов интенсивности напряжений при силовом, тепловом и комбинированном анализах выявлены взаимосвязи вида нагружения со статистическими характеристиками напряженного состояния ПС шлифованной Si₃N₄-TiCкерамики. Обобщенные и упорядоченные зависимости позволили объяснить влияние режима резания на интенсивность износа инструментов из Si_3N_4 -ТіС-керамики, увеличение их надежности при росте скорости резания и, соответственно, на повышение температуры в их ПС при эксплуатации с минимальными силовыми нагрузками. Выявленные взаимосвязи использованы для создания инновационных инструментов из Si_3N_4 -TiC-керамики, учитывающих изменение структуры их ПС при изготовлении и адаптированных к его разрушению под действием эксплуатационных нагрузок.

* * *

Настоящая работа финансируется в рамках государственного задания Министерства науки и высшего образования Российской Федерации, проект № 0707-2020-0025.

- 5. *Harrer, Walter.* Influence of surface defects on the biaxial strength of a silicon nitride ceramic increase of strength by crack healing / *Walter Harrer, Robert Danzer, R. Morrell* // J. Eur. Ceram. Soc. 2012. Vol. 32, N 1. P. 27–35.
- 6. **Kuzin, V. V.** Correlation of diamond grinding regimes with Si_3N_4 -ceramic surface quality / V. V. Kuzin, S. Yu. Fedorov, S. N. Grigor'ev // Refract. Ind. Ceram. 2017. Vol. 58, N_2 1. P. 78–81.
- **Кузин, В. В.** Взаимосвязь режимов алмазного шлифования с состоянием поверхности Si_3N_4 -керамики / В. В. Кузин, С. Ю. Фёдоров, С. Н. Григорьев // Новые огнеупоры. 2017. № 1. С. 67–70.
- 7. **Sun, Jian.** Analysis of surface morphology and roughness on $\mathrm{Si}_3\mathrm{N}_4$ ceramic grinding / Jian Sun, Yuhou Wu, Peng Zhou [et al.] // Academic Journal of Manufacturing Engineering. 2018. Vol. 16, № 3. P. 20–28.
- 8. *Kuzin, V.* A model of forming the surface layer of ceramic parts based on silicon nitride in the grinding process / *V. Kuzin //* Key Eng. Mater. Precision Machining. 2012. Vol. 496. P. 127–131.
- 9. *Xu, Weiwei.* Dynamic fatigue behavior of Si₃N₄-based ceramic tool materials at ambient and high temperatures / *Weiwei Xu, Juntang Yuan, Zengbin Yin //* Ceram. Int. 2019. Vol. 45, № 17, part A. P. 21572–21578.

- 10. **Kuzin, V. V.** Increasing the operational stability of nitride-ceramic cutters by optimizing their grinding conditions / V. V. Kuzin // Russ. Eng. Res. 2003. Vol. 23. Ne 12. P. 32-36.
- Kузин, B. B. Повышение эксплуатационной стабильности режущих инструментов из нитридной керамики за счет оптимизации условий их заточки / B. B. B0. B12. B1. B3. B4. B5. B6. B7. B8. B8. B9. B
- 11. **Kuzin, V. V.** Wear of tools from nitride ceramics when machining nickel-based alloys / V. V. Kuzin, M. A. Volosova, M. Yu. Fedorov // Journal of Friction and Wear. 2013. Vol. 34, Nole 2 3. P. 199–203.
- **Кузин, В. В.** Износ инструментов из нитридной керамики при обработке никелевых сплавов / В. В. Кузин, М. А. Волосова, М. Ю. Федоров // Трение и износ. 2013. Т. 34, № 3. С. 265–271.
- 12. **Kuzin, V. V.** Evaluation of ceramic tool reliability with a limited number of tests based on established wear criteria / V. V. Kuzin, S. N. Grigor'ev, S. Yu. Fedorov // Refract. Ind. Ceram. 2018. Vol. 59, № 4. P. 386–390.
- **Кузин, В. В.** Оценка надежности керамических инструментов при ограниченном объеме испытаний на стойкость на основе установленных критериев износа / В. В. Кузин, С. Н. Григорьев, С. Ю. Федоров // Новые огнеупоры. 2018. № 7. С. 66–70.
- 13. *Kuzin, V. V.* The role of the thermal factor in the wear mechanism of ceramic tools: Part 1. Macrolevel / V. V. Kuzin, S. N. Grigoriev, and M. A. Volosova // Journal of Friction and Wear. 2014. Vol. 35, No. 6. P. 505–510.
- **Кузин, В. В.** Роль теплового фактора в механизме износа керамических инструментов. Часть 1. Макроуровень / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Трение и износ. 2014. № 6. С. 728–734.
- 14. **Kuzin, V. V.** Role of the thermal factor in the wear mechanism of ceramic tools. Part 2. Microlevel / V. V. Kuzin, S. N. Grigoriev, M. Yu. Fedorov // Journal of Friction and Wear. 2015. Vol. 36, \mathbb{N} . 1. P. 40–44.
- **Кузин, В. В.** Роль теплового фактора в механизме износа керамических инструментов. Часть 2. Микро-

- уровень / В. В. Кузин, С. Н. Григорьев, М. Ю. Федоров // Трение и износ. — 2015. — № 1. — С. 50-55.
- 15. *Kuzin, V. V.* Microstructural model of the surface layer of ceramics after diamond grinding taking into account its real structure and the conditions of contact interaction with elastic body / V.V.Kuzin, S.N.Grigor'ev, M.A.Volosova // Refract. Ind. Ceram. 2020. Vol. 61, Ne 3. P. 303-308.
- **Кузин, В. В.** Микроструктурная модель поверхностного слоя керамики после алмазного шлифования, учитывающая его реальную структуру и условия контактного взаимодействия с упругим телом / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. 2020. № 5. С. 59-64.
- 16. **Kuzin, V. V.** Basic framework for computer-aided engineering of polished ceramic surface layers / V. V. Kuzin, S. N. Grigor'ev, M. A. Volosova // Refract. Ind. Ceram. 2020. Vol. 61, \mathbb{N} 3. P. 349–354.
- **Кузин, В. В.** Основы компьютерной инженерии поверхностного слоя шлифованной керамики / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. 2020. № 6. С. 64–69.
- 17. **Кузин, В. В.** Силовой анализ напряженно-деформированного состояния поверхностного слоя шлифованной Si_3N_4 -ТіС-керамики / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. 2020. № 12. С. 54-60.
- 18. **Кузин, В. В.** Тепловой анализ напряженно-деформированного состояния поверхностного слоя шлифованной Si_3N_4 —ТіС-керамики / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. 2021. № 1. С. 61–68.
- 19. **Кузин, В. В.** Комбинированный анализ напряженно-деформированного состояния поверхностного слоя шлифованной Si_3N_4 —TiC-керамики / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. 2021. № 2. С. 60–66. ■

Получено 02.03.21 © В. В. Кузин, С. Н. Григорьев, М. А. Волосова, 2021 г.

