ПРОИЗВОДСТВО И ОБОРУДОВАНИЕ

Д. т. н. **Н. М. Суслов**, д. т. н. **С. Я. Давыдов** (⊠), д. т. н. **Д. Н. Суслов**, **С. А. Чернухин**

ФГБОУ ВО «Уральский государственный горный университет», Екатеринбург, Россия

УДК 621.879.323:62-82]:658.589

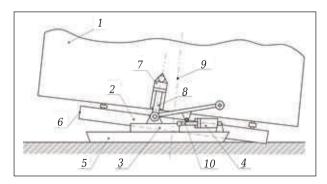
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ ПНЕВМОГИДРОАККУМУЛЯТОРОВ В ПРОЦЕССЕ ПЕРЕДВИЖЕНИЯ ЭКСКАВАТОРА-ДРАГЛАЙНА

Принято решение использовать аккумулированную энергию поднятой передней кромки машины в момент опускания ее на грунт для совершения манипуляций с опорными башмаками. Выполнен расчет параметров механизма шагания и выделяемой энергии при опускании передней кромки базы экскаватора. Рассчитано количество энергии, запасаемой в пнемогидроаккумуляторах. Результаты расчета показали, что запасенной энергии в пневмогидроаккумуляторах достаточно для проведения маневровых операций с опорными башмаками. Это повышает эффективность работы механизма шагания и работы экскаватора-драглайна в целом.

Ключевые слова: экскаватор-драглайн, тепловая энергия, механизм шагания, гидропривод, рабочая жидкость, пневмогидроаккумулятор.

ля оптимизации процесса шагания экскаватора-драглайна и снижения энергозатрат при его перемещении он постоянно подвергается конструктивным изменениям. Наибольшее распространение получил трехопорный гидравлический шагающий механизм, обеспечивающий минимальное удельное давление на грунт как при работе, так и при перемещении машины. Это важно при ведении работ на карьерах с низкой несущей способностью грунтов за счет больших опорных поверхностей механизма шагания.

В известных экскаваторах-драглайнах [1, 2] потенциальная энергия поднятой над грунтом передней кромки базы переходит в тепловую и выбрасывается в атмосферу, не позволяя температуре рабочей жидкости превысить 60 °C.


В процессе подъема передней (по ходу движения) кромки базы на значительную высоту для обеспечения требуемой величины шага необходимо рекуперировать потенциальную энергию поднятой над грунтом передней кромки базы в момент опускания ее на грунт. Потенциальная энергия поднятой передней кромки базы в момент опускания переходит в тепловую энергию рабочей жидкости гидросистемы привода механизма шагания, так как плавное опускание передней кромки базы на грунт достигается дросселированием рабочей жидкости [1–3].

 \bowtie

С. Я. Давыдов E-mail: davidovtrans@mail.ru Установлено, что оптимальная температура рабочей жидкости, обеспечивающая корректную работу всей гидравлической системы, при установившемся температурном режиме составляет 55–60 °C [4]. Более высокие температуры рабочей жидкости снижают срок службы гидроагрегатов, вызывают пенообразование и отрицательно влияют на минеральные масла.

Механизм шагания трехопорного экскаватора-драглайна [5] показан на рис. 1. В корпусе 1 машины вместо гидроаккумуляторов размещены пневмогидроаккумуляторы, встроенные в гидравлическую систему механизма шагания [6], при помощи которых возможна рекуперация потенциальной энергии поднятой над грунтом передней кромки базы 2.

Использование скользунов 3 и горизонтальное размещение тяговых гидроцилиндров 4 на

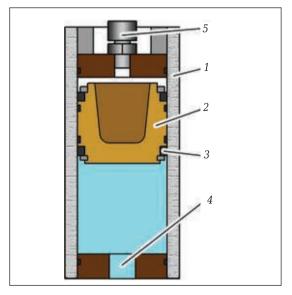


Рис. 1. Трехопорный механизм шагания экскаваторадраглайна: 1 — корпус; 2 — база; 3 — скользун; 4 — тяговый гидроцилиндр; 5 — опорный башмак; 6 — передняя кромка базы; 7 — подъемный гидроцилиндр; 8 — шток подъемного гидроцилиндра; 9 — центр масс экскаваторадраглайна; 10 — шток тягового гидроцилиндра

опорных башмаках 5 механизма шагания [5] позволяет осуществить шаг с минимальным отрывом передней кромки 6 базы 2 не более 0,1 м. При этом работа дроссельной заслонки, установленной в гидросистеме механизма шагания, обеспечивает плавность опускания базы 2 на грунт. Применение пневмогидроаккумуляторов с поршнем 2 (рис. 2) в гидравлической системе механизма шагания [7, 8] дает возможность аккумуляции энергии при опускании машины на грунт. Аккумулирование энергии без выброса ее через тепло в атмосферу позволяет поддерживать оптимальную температуру рабочей жидкости [3], а также сократить энергозатраты на совершение манипуляций с опорными башмаками 5 за счет исключения приводного насоса гидравлической системы механизма шагания.

С учетом особенностей условий использования гидроаккумуляторов [9] в гидросистеме привода механизма шагания экскаватора-драглайна предложены поршневые пневмогидроаккумуляторы, показанные на рис. 2 (http://www.hydro-pnevmo.ru/topic.php?ID=42).

Поршневой пневмогидроаккумулятор (см. рис. 2) состоит из корпуса 1, в котором расположен поршень 2 с уплотнениями 3, обеспечивающими герметичное разделение газа и жидкости. Подвод рабочей жидкости с гидравлической системы механизма шагания в момент опускания передней кромки базы на грунт — через канал 4. Зарядка пневмогидроаккумуляторов газом осуществляется через заправочный вентиль 5. В поршневом гидравлическом аккумуляторе на поршень 2 с одной стороны действует давление сжатого газа, с другой стороны — давление жидкости. Накопление энергии в поршневых пневмогидроаккумуляторах осуществляется за

Рис. 2. Поршневой пневмогидроаккумулятор: 1 — корпус; 2 — поршень; 3 — уплотнения; 4 — канал подвода рабочей жидкости; 5 — заправочный вентиль

счет сжатия газа, находящегося в них под давлением [8].

Использование поршня в качестве разделителя сред влечет за собой такие недостатки, как трение поршня в цилиндре и невысокое быстродействие в процессе работы (движение поршня ограничено скоростью 2 м/с). Эти недостатки существенно не сказываются на работе гидросистемы в целом.

Потери энергии, перешедшей в тепло, рассчитываются как разность между мощностью потребляемой насосом гидросистемы механизма шагания и полезной (отведенной) мощностью [9, 10]:

$$N_{\text{пот}} = N_{\text{под}} - N_{\text{отв}}, \tag{1}$$

где $N_{\text{пот}}$ — тепловой эквивалент отведенной мощности, Вт; $N_{\text{под}}$ — подведенная мощность к насосу, Вт; $N_{\text{отв}}$ — отведенная мощность, Вт.

$$N_{\text{\tiny mod}} = p \frac{Q_{\text{\tiny H}}}{\eta_{\text{\tiny H}}}, \tag{2}$$

$$N_{\text{OTB}} = \Delta p_{\text{Ofull}} \cdot Q_{\text{H}},\tag{3}$$

где p — давление на выходе из насоса, H/m^2 ; $Q_{\rm H}$ — массовый расход жидкости (подача насоса гидросистемы механизма шагания), кг/с; $\eta_{\rm H}$ — КПД насоса; $\Delta p_{\rm oбm}$ — разница давления рабочей жидкости на входе и выходе гидросистемы, H/m^2 .

$$N_{\text{\tiny OTB}} = Q_{\text{\tiny H}} \cdot c \cdot \Delta t, \tag{4}$$

где c — удельная теплоемкость при постоянном давлении, Дж/(кг·град); Δt — перепад температуры, °C.

Согласно [11] Δt в гидросистеме рассчитывается по формуле

$$\Delta t = \frac{\Delta p}{\rho \cdot c} \left(\frac{1 - \eta_{\text{H}}}{\eta_{\text{H}}} \right),\tag{5}$$

где Δp — разница давления рабочей жидкости на входе и выходе из дросселя гидросистемы механизма шагания [12], H/m^2 ; ρ — плотность рабочей жидкости, $\kappa r/m^3$.

При прохождении жидкости через дроссельную заслонку, применяемую для плавного опускания передней кромки базы экскаваторадраглайна [12], потенциальная энергия давления рабочей жидкости преобразуется в тепло. При принятии того, что теплоотдача в дросселе минимальна, можно считать, что вся энергия, теряемая рабочей жидкостью, идет на повышение температуры Δt , тогда [11]:

$$\Delta t = \frac{\Delta p}{0.c}.\tag{6}$$

Количество тепла Q_{τ} , Дж/с, выделяемого в гидросистеме за 1 с, определяется приводной мощностью насоса привода гидросистемы механизма шагания [3, 11, 12]:

$$Q_{\scriptscriptstyle \rm T} = N_{\scriptscriptstyle \rm IDP} = \frac{p_{\scriptscriptstyle \rm K} \cdot Q_{\scriptscriptstyle \rm H}}{\eta_{\scriptscriptstyle \rm OSUT}},\tag{7}$$

где $N_{\rm пp}$ — приводная мощность насоса гидросистемы механизма шагания, Дж/с; $p_{\rm k}$ — давление жидкости в гидросистеме, Н/м²; $\eta_{\rm общ}$ — общий КПД насоса.

За счет установки пневмогидроаккумуляторов в гидравлическую систему механизма шагания появляется возможность рационального использования запасенной энергии в процессе плавного опускания базы экскаватора на грунт. Использование аккумулированной энергии возможно при осуществлении маневровых операций с опорными башмаками. Маневровые операции с башмаками состоят из выноса их в направлении движения драглайна, опускания на грунт и подъема опорных башмаков. Для расчета операции подъема опорных башмаков необходимо рассчитать усилия P_{π} , H, на штоках подъемных гидроцилиндров [9]:

$$P_{\pi} = P_{\pi}' + P_{\pi}'' \tag{8}$$

где $P_{\rm ii}$ — составляющие усилий на штоках подъемных гидроцилиндров от действия силы тяжести опорных башмаков, $H; P_{\rm ii}$ — составляющие усилий на штоках подъемных гидроцилиндров от действия силы тяжести штоков подъемных гидроцилиндров, штоков тяговых гидроцилиндров, корпусов тяговых гидроцилиндров и скользунов, расположенных на опорных башмаках. H.

Работа $A_{\rm n}$, Н·м, на подъем опорных башмаков тяговыми цилиндрами рассчитывается [9, 7] так:

$$A_{\pi} = P_{\pi} \cdot h_{6},\tag{9}$$

где h_6 — расстояние между уровнем грунта и опорной плоскостью башмаков драглайна в стационарном положении, м.

При выносе опорных башмаков (выдвижении вперед по ходу движения драглайна) работу выполняют только тяговые гидроцилиндры. Расстояние, на которое выносятся опорные башмаки, соизмеримо с длиной шага. Работа $A_{\rm T}$, $H\cdot {\rm M}$, совершаемая тяговыми гидроцилиндрами в этот момент, рассчитывается по формуле

$$A_{\rm T} = L \cdot m_6 \cdot f_{\rm Tp} \cdot g,\tag{10}$$

где L — длина шага экскаватора-драглайна, м; m_6 — масса опорных башмаков, кг; $f_{\rm rp}$ — коэффициент скольжения, $f_{\rm rp}=0.07; g$ — ускорение свободного падения, м/с².

При опускании опорных башмаков на грунт за счет установки пневмогидроаккумуляторов в гидравлическую систему привода механизма шагания появляется возможность аккумулирования энергии $A_{\text{опуск}}$, $H\cdot \mathbf{m}$:

$$A_{\text{onyck}} = (m_6 + m_{\text{m.n}} + m_{\text{t}} + m_{\text{mt.t}})h_6 \cdot g, \tag{11}$$

где $m_{\text{п.п}}$ — масса штоков подъемных гидроцилиндров, кг; $m_{\text{т}}$ — масса корпусов тяговых гидроцилиндров и скользунов, кг; $m_{\text{шт.т}}$ — масса штоков и поршней тяговых пневмогидроаккумуляторов, кг

Работа A, H·м, расходуемая на подъем экскаватора [9]:

$$A = Kgmh, (12)$$

где K — коэффициент, указывающий, какая часть массы экскаватора-драглайна передается на башмаки при шагании, $K=0.7\div0.8$; m — масса экскаватора, кг; h — высота подъема центра масс экскаватора, необходимая для совершения шага, м.

РАСЧЕТ ПАРАМЕТРОВ МЕХАНИЗМА ШАГАНИЯ [1. 10]

Зависимость массы m_6 , кг, опорных башмаков от массы экскаватора-драглайна выражается формулой [9]

$$m_6 = 0.009 \cdot m^{1.2}. \tag{13}$$

Масса $m_{\text{п.п.}}$, кг, штока подъемного гидроцилиндра:

$$m_{\pi.\pi} = k_1 \cdot m \cdot p_{\pi}^{-1}, \tag{14}$$

где k_1 — коэффициент пропорциональности, k_1 = 0,114; p_{π} — давление жидкости в рабочих полостях подъемного гидроцилиндра, H/M^2 .

Масса $m_{\text{т}}$, кг, корпуса тягового гидроцилиндра и масса $m_{\text{шт.т}}$, кг, штока с поршнем тягового пневмогидроаккумулятора [9, 10]:

$$m_{\scriptscriptstyle \rm T} = k_2 \cdot m \cdot p_{\scriptscriptstyle \rm T}^{-1},\tag{15}$$

$$m_{\text{WTT}} = k_3 \cdot m \cdot p_{\text{T}}^{-1},\tag{16}$$

где k_2 и k_3 — коэффициенты пропорциональности, k_2 = 0,18, k_3 = 0,065; $p_{\scriptscriptstyle T}$ — давление рабочей жидкости в полостях тягового гидроцилиндра, H/M^2 .

Произведен расчет параметров трехопорного гидравлического механизма шагания для основных типов экскаваторов-драглайнов Уральского завода тяжелого машиностроения (УЗТМ) по представленным зависимостям. Результаты расчетов, приведенные в табл. 1, будут использованы для определения энергозатрат на перемещение разных типов экскаваторовдраглайнов, оснащенных трехопорным механизмом шагания.

На примере экскаватора-драглайна ЭШ-14/75, оснащенного трехопорным механизмом шагания со скользунами и горизонтально расположенными тяговыми гидроцилиндрами на опорных башмаках, проведены расчеты совершаемой работы A на поднятие передней кромки опорной базы, $A_{\rm п}$ на подъем, $A_{\rm опуск}$ на опускание опорных башмаков и $A_{\rm T}$ на подачу опорных башмаков:

 $A = 0.75 \cdot 9.8 \cdot 1400 \cdot 10^{3} \cdot 0.1 = 1029 \text{ kH} \cdot \text{m},$

Таблица 1. **Результаты расчетов основных параметров трехопорных гидравлических механизмов шагания экскаваторов-драглайнов**

Тип экскаватора- драглайна	Масса машины, 10³ кг	Масса опорных башмаков, 10³ кг	Масса штока подъемного гид- роцилиндра, 10 ³ кг	Масса поршня со штоком тягового ги- дроцилиндра, 10 ³ кг	Масса цилиндра тягового гидроци- линдра, 10 ³ кг	Длина шага, м		
ЭШ-14/75 ЭШ-15/90 ЭШ-15/90А ЭШ-25/100 ЭШ-80/100	1400 1410 1626 2600 10300	47,0 65,8 6,8 104,5 776.3	9,5 9,5 10,7 14,6 25,8	5,2 5,2 5,35 9,31 21,15	15,2 15,2 18,25 21,2 51,5	1,9 2,0 2,0 2,5 2,9		

 $A_{\pi} = (9.5 + 5.2 + 15.2) \cdot 10^{3} \cdot 0.5 \cdot 9.8 = 146.51 \text{ kH·m},$

 $A_{\text{опуск}} = A_{\pi} = 146,51 \text{ кH·м},$

 $A_{\text{T}} = 1.9 \cdot 47 \cdot 10^{3} \cdot 0.07 \cdot 9.8 = 61.26 \text{ kH·m}.$

Затрачиваемая работа A_6 на манипуляции с опорными башмаками:

$$A_6 = A_{\pi} + A_{\tau} = 146,51 + 61,26 = 207,77 \text{ kH·m}.$$

За счет потерь на трение поршня, являющегося разделителем сред в пневмогидроаккумуляторе, а также потерь на преодоление сил трения по длине трубопроводов и местные гидравлические сопротивления в процессе зарядки пневмогидроаккумуляторов теряется доля аккумулируемой энергии. Следовательно, при опускании базы на грунт и при опускании опорных башмаков рекуперируется не вся, а определенная часть затраченной энергии [13]. С учетом этих потерь произведен расчет энергозатрат на совершение одного шага и аккумуляцию энергии для шагающих экскаваторов-драглайнов УЗТМ. Результаты расчетов приведены в табл. 2. Из полученных расчетных данных видно, что запасенной в момент опускания передней кромки базы на грунт энергии в пневмогидроаккумуляторах достаточно для совершения манипуляций с опорными башмаками.

Параметры пневмогидроаккумуляторов, установленных в гидросистему трехоопорного механизма шагания экскаватора-драглайна, рассчитываются по формуле [13, 14]

$$PV^{N} = \text{const}, \tag{17}$$

где P — давление в пневмогидроаккумуляторе, H/M^2 ; V — объем пневмогидроаккумулятора, M^3 ; N — показатель политропы, принимается N = 1,4 (https://studopedia.ru/5_913_raschetiobsluzhivanie-pnevmogidroakkumulyatorov. html).

Для определения полезного объема V_{π} , м³, пневмогидроаккумулятора используется формула [13–15]:

$$V_{\rm m} = V_{\rm K} \left[\left(\frac{P_{\rm H}}{P_{\rm min}} \right)^{\frac{1}{N}} - \left(\frac{P_{\rm H}}{P_{\rm max}} \right)^{\frac{1}{N}} \right], \tag{18}$$

где $V_{\rm K}$ — конструктивный объем аккумулятора, м³; $P_{\rm H}$ — начальное давление в пневмогидроаккумуляторе (выбирается равным $0.9P_{\rm min}$, $H/{\rm M}^2$); $P_{\rm min}$ — минимально допустимое давление в конце разрядки, $H/{\rm M}^2$; $P_{\rm max}$ — давление в пневмогидроаккумуляторе в конце зарядки, $H/{\rm M}^2$.

В механизме шагания при осуществлении шага экскаватором-драглайном в момент плавного опускания передней кромки базы на грунт за счет дросселирования происходит нагрев рабочей жидкости и узлов гидросистемы. Установка пневмогидроаккумуляторов в гидравлическую систему привода механизма шагания, а также горизонтальное размещение тяговых гидроцилиндров на опорных башмаках позволяют аккумулировать энергию поднятой передней кромки базы экскаватора-драглайна. Произведенные расчеты на примере ряда экскаваторовдраглайнов УЗТМ позволяют утверждать, что запасенной энергии в превмогидроаккумуляторах достаточно для осуществления манипуляций с опорными башмаками в процессе передвижения экскаватора-драглайна. значительно повышает эффективность работы механизма шагания и экскаватора-драглайна в целом.

Библиографический список

1. **Подэрни, Р. Ю.** Горные машины и комплексы для открытых работ : уч. для вузов / Р. Ю. Подэрни. — 2-е изд., перераб. и доп. — М. : Недра, 1985. — 544 с.

Таблица 2. Энергозатраты за один шаг шагающих экскаваторов-драглайнов УЗТМ

	Расход эне	ргии, кН·м	Количество аккумулируемой энергии, H·м		
Тип машины	на отрыв передней	на манипуляции с опор-	при опускании базы на	при опускании опорных	
	кромки базы	ными башмаками	грунт	башмаков на грунт	
ЭШ-14/75	1029,0	207,77	720,3	102,56	
ЭШ-15/90	1036,35	236,79	725,45	102,56	
ЭШ-15/90А	1195,11	177,4	836,58	117,65	
ЭШ-25/100	1911,0	400,26	1337,7	154,73	
ЭШ-80/100	7570,5	2026,78	5299,35	337,68	

- 2. **А. с. 76031 СССР.** Движитель для моторных повозок, преимущественно для экскаваторов / Т. Е. Исаев, Б. И. Сатовский. № 379023; заявл. 24.05.1948; опубл. 1949.
- 3. **Чернухин, С. А.** Анализ и перспективы развития шагающего ходового оборудования горных машин // Вестник ЗабГУ. 2018. № 9. C. 29-35.
- 4. *Гринчар, Н. Г.* Основы гидропривода машин : уч. пособие. В 2 ч. Ч. 2 / Н. Г. Гринчар, Н. А. Зайцева. М. : [б. г.], 2016. 565 с.
- 5. **А. с. 825806 СССР.** Механизм шагания экскаватора / П. А. Касьянов, Н. М. Суслов. № 2809216 ; заявл. 24.08.1979 ; опубл. 30.04.1981, Бюл. № 16.
- 6. **A. с. 1121366 СССР.** Гидропривод ходового оборудования шагающего экскаватора / В. Р. Кубачек, П. А. Касьянов, Н. М. Суслов, В. С. Шестаков. № 3565604; заявл. 11.03.1983; опубл. 30.10.1984, Бюл. № 40.
- 7. **Суслов, Н. М.** Гидравлический привод механизма шагания с гидроаккумуляторами / Н. М. Суслов, С. А. Чернухин // Горное оборудование и электромеханика. 2018. \mathbb{N} 1. С. 3–7.
- 8. **Руппель, Е. Ю.** Приложение рядов для расчета рекуперации кинетической энергии при использовании пневмогидроаккумулятора / Е. Ю. Руппель // Вестник СибАДИ. 2015. Вып. 5 (45). С. 129–135.
- 9. *Суслов, Н. М.* Совершенствование шагающих механизмов, повышающее эффективность их использования / Н. М. Суслов, С. А. Чернухин // Изв. УГГУ. 2018. Вып. 3 (51). С. 108–113.
- 10. **Доценко, А. И.** Машины для земляных работ : уч. для студентов вузов / А. И. Доценко, Г. Н. Карасев, Г. В. Кустарев, К. К. Шестопалов. М. : БАСТЕТ, 2012. 688 с.

- 11. **Suslov, N. M.** Thermal calculation of the hydraulic drive for a dragline walking mechanism / N. M. Suslov, S. Ya. Davydov, D. N. Suslov [et al.] // Refract. Ind. Ceram. 2020. Vol. 60, N 6. P. 558–560.
- Cуслов, H. M. Тепловой расчет гидропривода механизма шагания драглайна / H. M. Cуслов, C. \mathcal{A} . \mathcal{A} \mathcal{A}
- 12. **Suslov, N. M.** Using the heat energy the hydraulic drive of a walking mechanism to remove frozen soil / N. M. Suslov, S. Ya. Davydov, D. N. Suslov // Refract. Ind. Ceram. 2012. Vol. 53, N 2. P. 94–96.
- *Суслов, Н. М.* Использование тепловой энергии гидропривода механизма шагания для удаления примерзшего грунта / *Н. М. Суслов, С. Я. Давыдов, Д. Н. Суслов* // Новые огнеупоры. 2012. № 3. С. 143–145.
- 13. **Малыбаев, Н. С.** Рекомендации по выбору гидроаккумулятора для гидравлической системы / Н. С. Малыбаев, А. Ж. Касенов, К. К. Абишев [и др.] // Наука и техника Казахстана. 2020. № 1.
- 14. **Никитаев, И. В.** Выбор параметров гидроаккумулятора системы амортизации рабочего оборудования подъемно-транспортных машин с жесткой подвеской / И. В. Никитаев // Научные проблемы водного транспорта. 2012. № 30.
- 15. *Лагунова, Ю. А.* Применение гидропневмоаккумуляторов в горных машинах / *Ю. А. Лагунова, А. Е. Кальянов* // Сборка в машиностроении, приборостроении. 2013. \mathbb{N} 12. \mathbb{C} . 39-41.

Получено 15.02.21 © Н. М. Суслов, С. Я. Давыдов, Д. Н. Суслов, С. А. Чернухин, 2021 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

№ 3 2021 **Hobbie Otheynopbi** ISSN 1683-4518 **15**