K. т. н. **В. А. Кононов** (⊠)

ООО «Шибер», Москва, Россия

УДК 622.336:622.33

ГРАФИТ: РЫНОК, ДОБЫЧА, СВОЙСТВА, ПРИМЕНЕНИЕ

Рассмотрен мировой и отечественный рынок графита. Отмечено, что основным производителем и потребителем графита является Китай, который добывает 65 % графита и потребляет 35 % его мирового производства. Приведены месторождения графита, добыча графита в России, свойства графита, его применение. Указаны характеристики графена и области его применения.

Ключевые слова: рынок графита, природный графит, синтетический графит, чешуйчатый графит, сферический графит, огнеупорное производство, литейная промышленность, литий-ионные батареи, графен.

АНАЛИЗ МИРОВОГО И ОТЕЧЕСТВЕННОГО РЫНКА ГРАФИТА

о итогам 2019 г. мировой рынок графита оценивался в 14,3 млрд долл. с перспективой увеличения его объема в 2020–2027 гг. на 5,6 % ежегодно и достижения общего объема рынка в 2027 г. 22 млрд долл. Основными потребителями графита являются: огнеупорное производство (29 % рынка), литейная промышленность и производство тиглей (22 %), производство литийнонных батарей (19 %), специальные отрасли применения, в том числе атомная и др. (12 %), производство смазок и покрытий (11 %), другие отрасли (7 %).

В мире добывается около 650 тыс. т в год природного графита, причем производство чешуйчатого графита в мире составляет 59 %, добыча аморфного графита 41 %. В топ-10 стран — крупнейших разработчиков графитовых месторождений в мире входят (рис. 1):

Китай. Крупнейший производитель графита в мире, в стране в 2017 г. было добыто около 780 тыс. т графита. Доля Китая в мировом производстве графита составляет 65 % его добычи и 35 % его потребления. В результате технологических процессов, применяемых при добыче графита, происходит значительное загрязнение окружающей среды. Из-за возникших экологических проблем в 2017 г. были закрыты более

В. А. Кононов E-mail: kvant2404@mail.ru

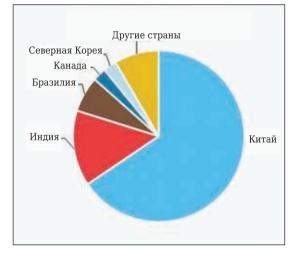


Рис. 1. Мировой рынок графита [1]

20 % месторождений по добыче графита, в том числе все графитовые предприятия в провинции Шаньдун. При получении лучших сортов графита образуется большое количество отходов и используются химические технологии, в том числе с применением вредных веществ (плавиковая кислота и др.). Из-за закрытия в Китае многих графитовых предприятий возникли перебои в огнеупорной отрасли не только в самом Китае, но и в тех странах, которые имеют производство или закупают углеродсодержащие огнеупоры в Китае. В уезде Любэй, который находится в 60 км от границы с Октябрьским районом Еврейской АО РФ (напротив месторождения Союзное), активно работает графитовая шахта «Юньшань», которая принадлежит крупнейшей китайской государственной корпорации China Minmetals. В 2019 г. на шахте было переработано более 3 млн т графитовых и попутных руд. В настоящее время предприятие приступило к строительству гигантского хвостохранилища на 1 млн м³ отходов, поскольку существующее хвостохранилище заполняется за 24 ч и тормозит процесс добычи. С введением в эксплуатацию нового хвостохранилища планируется начать добычу графита без сбоев и вреда окружающей среде на ближайшие 5–10 лет. В уезде Любэй создан также поддерживаемый местными властями современный графитовый технопарк.

Стоимость в Китае лучшего чешуйчатого графита марки 196 в ноябре 2020 г. составила 3450 юаней/т, что на 150 юаней/т больше, чем месяцем ранее [1]. С 2018 г. Китай начал вкладывать инвестиции во многие проекты развития добычи графита за пределами страны.

Индия. В 2017 г. заняла второе место в мире по производству графита с объемом 170 тыс. т в год. Наибольшие запасы графита имеются в штате Аруначал-Прадеш (43 % запасов графита в Индии). В стране действуют основных производителей графита.

Бразилия. Является с 2018 г. третьей по добыче графита в мире с объемом производства 95 тыс. т продукции. Ведущие производители графита Бразилии — частные компании, главными из них считаются Extrativa Metalquimica и Nacional de Grafite.

Канада. Производство графита составляет около 30 тыс. т. Интерес к Канаде в качестве потенциального источника графита проявляет компания Tesla для производства литий-ионных батарей в штате Невада.

Мозамбик. В 2017 г. совершил большой скачок, добыв в 2016 г. 23 тыс. т графита. Причем фирма Syrah Resources начала свое производство только в начале 2017 г., другая фирма — Triton Minerals в первом полугодии 2020 г.

Россия. В 2017 г. объем производства графита остался на уровне 2016 г. и составил 19 тыс. т. Россия намечает значительно увеличить добычу графита в течение следующих нескольких лет благодаря реализации трех новых инвестиционных проектов (Дальграфит, Уралграфит, месторождение графита Ихала в Карелии).

Украина. В течение последних пяти лет производит около 15 тыс. т природного графита. Крупнейшим производителем является предприятие «Завальевский графит», работающее с 1930-х годов и производившее ранее до 30 тыс. т натурального графита в год.

Пакистан. Занимает 8-е место в мире по производству графита. В 2017 г. произведено 14 тыс. т графита. Информация о добыче графита в Пакистане ограничена.

Норвегия. Добыча графита стабильна в течение 2015–2018 гг. и составляет 8 тыс. т. Графитовые месторождения страны имеют ограниченные запасы чешуйчатого графита.

Мадагаскар. В 2017 г. было произведено 7 тыс. т графита, что на 1000 т меньше, чем в 2016 г. В стране есть несколько компаний, добывающих графит (Bass Metals, BlackEarth Minerals и NextSource Materials).

США. Страна на 100 % зависит от импорта графита. В конце 2020 г. уходящий президент США Трамп подписал указ о развитии в стране производства критически важных полезных ископаемых (графит, ванадий и др.), которые закупаются у иностранных поставщиков. Компания Westwater Resources, Inc. (NASDAO: WWR) начала разработку месторождения графита Куза (штат Алабама), которое признано властями страны стратегически важным. Этой компании уже предоставлены гранты, ссуды и другие виды государственной поддержки. Компания в конце 2020 г. заключила договор об опытной поставке природного чешуйчатого графитового концентрата, изготовленного в Германии. Будет изготовлено 10 т трех марок графита для аккумуляторных батарей по технологии, исключающей применение плавиковой кислоты. Если полученный в Германии графит будет соответствовать требованиям по качеству и экологии, то по этой инновационной технологии в США будет построен новый завод.

ДОБЫЧА ГРАФИТА В РОССИИ

На территории России имеется около 30 месторождений графита, но разведаны и эксплуатируются лишь немногие из них. Наиболее крупные месторождения графита находятся в Восточной Сибири (Ботогольское, Курейское), на Дальнем Востоке (Союзное) и Урале (Боевское, Полтавское, Кыштымское). Большинство разведанных месторождений относятся к скрытокристаллическим плотным или тонкочешуйчатым графитам. Залежи крупночешуйчатого (тигельного) графита на территории России по общим запасам сравнительно невелики [2].

В России в 2019 г. было произведено 16,6 тыс. т природного графита; произошло снижение объема производства на 6,7 % к уровню предыдущего года. Причем падение объема добычи происходит в течение трех последних лет. Однако, несмотря на пандемию коронавируса, в первом полугодии 2020 г. производство природного графита составило 12 тыс. т (увеличилось на 9,1 % к уровню июля прошлого года).

Эффективно развивается добыча графитов на действующем Тайгинском месторождении (Челябинская обл.), на котором ежегодно добывается около 10 тыс. т кристаллического графита. В Эвенкийском АО Красноярского края начинает восстанавливаться добыча кристаллического графита на Ботогольском месторождении с запасами 6 млн т графита.

На левом берегу Нижней Тунгуски располагается Ногинское месторождение с запасами около 2 млн т высококачественного аморфного графита с содержанием углерода 80-90 %. Добыча графита осуществляется основном в зимнее время, далее из Ногинска графит вывозится на баржах на графитовую фабрику в Красноярск, а с фабрики в разные районы страны и на экспорт за границу. В 2020 г. в Красноярском крае улучшили технологию переработки скрытокристаллического графита Ногинского месторождения с использованием новых методов обогащения (термическое измельчение). Разработаны также два сценария модернизации действующего производства: базовая модернизация — до 15 тыс. т в год с получением конечной продукции с содержанием 85-92 % углерода и 0,3-0,5 % серы и глубокая модернизация — до 46 тыс. т в год с содержанием 99 % углерода и 0,1 % серы.

В 2017 г. в России началась разработка графитового месторождения Союзное, которое является одним из самых крупных месторождений высококачественного графита в мире (см. таблицу). По прогнозам, общие ресурсы Тополихинского участка месторождения Союзное составляют около 15 млн т графита. Добыча и переработка сырья рассчитаны на ближайшие 60 лет. Среднее содержание графита в месторождении Союзное 12,5 %, что значительно превосходит уровень качества большинства известных в мире месторождений (см. таблицу).

Общие запасы месторождения Союзное оцениваются в 116,0 млн т. Ориентировочно графита достаточно для добычи в течение 300 лет. В 2020 г. на месторождении было запланировано строительство основных производственных объектов: карьера мощностью 350 тыс. т руды в год и перерабатывающей фабрики мощностью 40 тыс. т графитовой продукции в год, а также объектов инфраструктуры: ВЛ-110 кВ, жилья для персо-

нала, прибывающего из других регионов страны, складского комплекса на железнодорожной станции Унгун. Запуск предприятия намечен на 2021 г. Объем инвестиций в первый этап проекта составит 120 млн долл. Для полного освоения месторождения требуются общие инвестиции в размере 19 млрд руб. [3].

На предприятии в перспективе будет организовано производство высокочистого графита для смазок, графитовых стержней атомных реакторов и графита для синтеза алмазов. Намечается также организация производства сферического графита для литий-ионных аккумуляторов. Большинство технологий с помощью ведущих научных организаций страны уже отработаны. Одним из главных акционеров вводимого предприятия стало ПАО «Комбинат «Магнезит». Сегодня на Пальнем Востоке России создано 18 территорий опережающего развития, и добыча графита на месторождении Союзный входит в их состав. На территориях действуют определенные льготы со стороны государства.

В Лахденпохском районе Республики Карелия на месторождении Ихала приступили к созданию горно-обогатительного комбината по производству графита. Инвестиционные затраты оцениваются 1,5 млрд руб. Срок реализации проекта 2022 г. Проектная мощность месторождения 20 тыс. т в год. По суммарным запасам данное месторождение является одним из крупнейших в Европе, прогнозные ресурсы графита превышают 17 млн т.

ГРАФИТ. ЕГО СВОЙСТВА И ПРИМЕНЕНИЕ

Графит (от др. греч. $\gamma \rho \acute{\alpha} \phi \omega$ — пишу) — природный материал, относящийся к классу самородных элементов и являющийся аллотропной модификацией углерода. Имеет слоистую структуру, каждый слой его кристаллической

	_				FOI
Kn		месторождения	FROMUTO	D MUNO	131
	Alluchmuc	MECIODOWTEUNY	IDawnia	D MINDE	131

	The Property of				
Мостополических	Запасы руды, млн т	Содержание графита		- Страна	
Месторождение		%	млн т	Страна	
Syrah Resources	1150,0	10,2	117,3	Мозамбик	
Dalgraphite (Дальграфит)	116,0	12,5	14,5	Россия	
Graphite One	284,7	4,5	12,8	США (Аляска)	
Mason Graphite	50,0	15,6	7,8	Канада	
Energizer Resources	123,0	6,3	7,75	Магадаскар	
Triton Minerals	103,0	5,5	5,69	Мозамбик	
Magnesita	57,0	7,0	3,99	Бразилия	
Talga Resources	11,9	18,2	2,17	Швеция	
Focus Graphite	12,7	14,4	1,83	Канада	
Northern Graphite	98,3	1,8	1,81	»	
Alabava Graphite Corp.	65,2	2,7	1,76	США (Алабама)	
Kibaran	14,9	10,5	1,56	Танзания	
Filnder Resources	9,9	7,5	0,74	Швеция	
Lamboo Resources	9,2	5,1	0,47	Австралия	
Valence Uley	6,4	7,1	0,45	»	
Archer Exploration	5,7	7,6	0,43	»	
Stratmin Global Resources	5,7	4,1	0,23	Магадаскар	

№ 3 2021 **Hobbie Otheytopbi** ISSN 1683-4518 **5**

Рис. 2. Образец природного графита

решетки может по-разному располагаться по отношению друг к другу. Химический состав природного графита не отличается высокой чистотой и в большинстве его сортов присутствует зола (10–20 %), которая состоит из примесей FeO, SiO_2 , Al_2O_3 , MgO, P_2O_5 , CuO, CaO и др. Кроме того, в состав графита иногда входят газы (до 2 %), битумы и вода.

Графит имеет железно-черный или стальносерый цвет (рис. 2). Скрытокристаллические графиты имеют матовый оттенок и практически не блестят [4]. На ощупь графит жирный и оставляет след на бумаге и пальцах. Удельный вес графита, зависящий от дисперсности материала и присутствия в нем тончайших пор, составляет 2,09–2,23 г/см³.

Графит обладает неметаллическими и металлическими свойствами, что обеспечивает его широкое промышленное применение. Металлические свойства графита определяются показателями тепло- и электропроводности, а неметаллические связаны с его высокой термостойкостью, химической инертностью и смазывающей способностью.

Изделия из графита обладают высокими эксплуатационными характеристиками. Графит устойчив к химическим и природным воздействиям, достаточно прочен, хорошо проводит электрический ток, отличается низкой твердостью, относительной мягкостью и после воздействия высоких температур твердеет.

ВИДЫ ПРИРОДНОГО ГРАФИТА

Природный графит бывает аморфный, кристаллический и жильный. В классификации графита учитывается также специфика его применения. По структуре применения природный графит бывает следующих видов.

Графит тигельный. Относится к распространенным видам природного графита и используется для производства огнеупорных изделий. Имеет повышенную теплопроводность и способен выдерживать резкие перепады тем-

пературы. В соответствии с ГОСТ 4596-75 — с изменениями № 1, 2, 3 существуют графиты марок ГТ-1, ГТ-2 и ГТ-3 с 7, 8,5 и 10 % зольности соответственно [4]. Высокая зольность даже лучшего отечественного графита марки ГТ-1 не позволяет обеспечить высокое качество огнеупоров ответственного назначения (плиты для шиберных затворов, изделия для МНЛЗ и др.). Поэтому многие потребители вынуждены закупать готовые изделия или сырье в Китае.

В Китае для производства ответственных огнеупоров используется графит серии LG, который содержит 98,0, 97,0 и 96,0 % углерода с низкой зольностью. Свойства графита в Китае определяются стандартом GB/T 3518–2008. Например, для огнеупоров ответственного назначения применяются лучшие графиты марки 196 с содержанием углерода более 97,0 %. Для серийных огнеупоров используются графиты с содержанием углерода 94,0–95,0 % с небольшой зольностью. В каждой марке чешуйчатого графита существует деление на 6–10 разных фракций, благодаря которым можно обеспечить необходимую структуру огнеупора.

В России тигельный графит марки ГМЗ-МГ используется для производства тиглей большой вместимости для плавки медных сплавов; графит марки ГМЗ-МТ предназначен для плавки тяжелых и цветных металлов при 2000 °С в вакуумных печах или в печах с защитной атмосферой [5]. Важное направление применения тигельного графита в России — сырье для огнеупорной продукции ответственного назначения: периклазоуглеродистой футеровки для электропечей и сталеразливочных ковшей, корундографитовых плит для шиберных затворов, изделий для разливки металла из сталеплавильных и промежуточных ковшей, плавильных тиглей и др.

Графит литейный (серебристый). Характеризуется устойчивостью к температурному расширению при высоких температурах. Эта особенность используется в литейной отрасли для получения изделий высокого качества. Материал имеет высокую шлакоустойчивость и устойчивость к выгоранию. Для снижения способности к окислению при высоких температурах (>700 °C) к литейному графиту рекомендуется добавлять небольшое количество огнеупорной глины. В соответствии с ГОСТ 5279-74 с изменениями № 1-2 в России производят несколько марок серебристого (литейного) графита. Графит марок ГЛ-1 и ГЛ-2 используют для изготовления красок и паст (припыла) в литейном производстве. Кроме того, его применяют в качестве термостойкой добавки к огнеупорным материалам; в качестве защитной смазки при выплавке стали; при обмазывании литейных форм смесью графита и воды; при обработке изложниц специальным составом из тонкомолотого графита; для изготовления противопригарных покрытий при получении отливок.

Графит электродный. Относится к малозольному крупнозернистому графиту и производится в соответствии с требованиями ТУ 48-20-86-81 с изменениями № 1-17. По способу получения и физико-механическим свойствам он аналогичен материалу графитированных электродов, используемых в электротермических печах. Из электродного графита можно изготовить широкий диапазон крупногабаритных изделий (блоки графитовые и др.) любых размеров. Применяется для изготовления графитовых электродов, используемых для резки толстых слоев металла в стале- и чугунолитейном производстве, а также графитовых тиглей для выплавки черных, цветных и драгоценных металлов и графитовых блоков для футеровки алюминиевых электролизеров и термических печей.

Графит элементный. В соответствии с ГОСТ 7478-75 с изменениями № 1-3 существуют четыре марки элементного графита. Графит марки ГЭ-1 содержит 10 % золы, ГЭ-2 14 %, ГЭ-3 10 %, ГЭ-4 14 %. Широко применяется в гальванике для изготовления высококачественных изделий повышенной тепло- и электропроводности.

Графит аккумуляторный. Используется для производства электродов с улучшенными техническими и химическими свойствами. В соответствии с ГОСТ 10273–79 производят три марки аккумуляторного графита (ГАК-1, ГАК-2 и ГАК-3). Кроме того, графит используется в качестве добавки для изготовления активных масс щелочных аккумуляторов и графитированных антифрикционных изделий из цветных металлов. Угольные электроды из аккумуляторного графита применяются в электропечах для выплавки специальных сталей и ферросплавов и в электролизерах для выплавки магния, алюминия и других цветных металлов.

Графит для изготовления смазок. Этот вид графита производят в соответствии с ГОСТ 8295-72 с изменениями № 1-4. Применяется для изготовления консистентных смазок для открытых шестерен прокатных станов, рессор автомобилей, редукторов, червячных, шестеренчатых и цепных передач, домкратов и других высоконагруженных узлов трения, а также в качестве уплотнений в запорной и ходовой арматуре. В зависимости от технологических условий эксплуатации смазки производятся в виде низкодисперсного графитового порошка, суспензии на основе масла или консистентных смазок. Суспензии графита с органическими и минеральными маслами не только эффективно защищают механизмы от коррозии, но и имеют практически неограниченный срок годности.

ВИДЫ ИСКУССТВЕННОГО ГРАФИТА

Искусственный графит широко применяют в металлургии, энергетике, атомной и химической промышленности, в производстве огнеупорных материалов и стекла. Благодаря ему создаются различные кислото- и термостойкие материалы с предсказуемыми характеристиками. Основные виды искусственного графита получают обработкой просеянной смеси нефтяного или антрацитового кокса и пека. На выходе получается однородный низкопористый материал, из которого можно изготовить сложнофасонные детали с минимальными допусками. Марки и характеристики графита зависят от соотношения кокса и пека. Производственный цикл включает отбор, рассев и смешивание исходных материалов; создание пресс-массы; прессование методом экструзии или изостатическое; обжиг в диапазоне 800-1200 °C; пропитку материала для получения заданных свойств с использованием пека, кремния или фенолоформальдегидных смол; графитацию при высокой температуре (до 3000 °C).

Существуют разные виды искусственного графита.

Пиролитический графит (пирографит, электрографит). Получается искусственным способом в процессе пиролиза газообразных углеводородов (метан и др.) при 1500 °С в вакууме. После образования пироуглерод нагревают до 3000 °С при давлении 50 МПа. Основной потребитель пироуглерода — электротехническая промышленность.

конструкционный. Графит Представляет собой специальный материал для производства фасонных изделий, используемых в металлургии и химической промышленности. Конструкционные материалы на основе графита обладают уникальными свойствами: высокими прочностью, термостойкостью (с возможностью нагрева до 4000 °C), теплопроводностью, электропроводностью (увеличивающейся при нагреве), способностью к механической обработке для получения изделий любой сложности. Порошок из конструкционного графита используют для изготовления износостойких полимеров, аккумуляторных батарей, жаропрочных красок, а также при выплавке чугуна, в ядерной про-

Графит изостатического прессования. Эффективная замена традиционному и конструкционному графиту при изготовлении фасонных изделий. Графит получают помолом, смешиванием и последующим прессованием графитового сырья. После обжига при 1100 °С и последующей графитации при 2400–2800 °С материал приобретает правильную гексагональную структуру; повышается его стойкость к износу при высоких температурах, к окислению и

Рис. 3. Изделия из изостатического графита

воздействию агрессивных сред [6]. Из изостатического графита производят плавильные тигли, графитовые трубы, втулки и подшипники, кристаллизаторы, нагревательные элементы, матрицы и пуансоны для прессования и др. Изостатический графит марки ИГ-172 (IG-1SP) применяется для изготовления фильер, литейных и прессовых форм, штоков, стаканов, а также в атомной энергетике, металлургии, в производстве полупроводников (рис. 3).

Силицированный графит. Состоит из углерода и карбида кремния. Устойчив к воздействию химических веществ, имеет низкую степень окисления. Получают с помощью специальной обработки некоторых пористых сортов искусственного графита: внутрь структуры углерода вводят расплав кремния. При обработке выше 1600 °C происходит химический процесс, способствующий образованию карбида кремния. Силицированный графит имеет высокую стойкость к абразивному износу и способность самосмазываться, что позволяет использовать его в производстве радиальных и осевых подшипников, в соплах пескоструйных машин, а также долговечных тиглей, погружных чехлов термопар, форсунок, деталей горелок и др. (рис. 4).

Сферический графит. Получают из хлопьевидного концентрата природного графита,

Рис. 4. Изделия из силицированного графита

хлопья которого очищаются и в процессе обработки приобретают сферическую форму. При реализации этой цели используется совершенно новый процесс, включающий элементы химической обработки. Благодаря этому увеличиваются площадь поверхности частиц и проводимость материала. В этой технологии производители сферического графита должны обеспечить необходимую чистоту исходного сырья; в каждой партии контролируются содержание примесей и соблюдение требований по размерам и форме частиц. Сферический графит используется для производства литий-ионных аккумуляторов для смартфонов, компьютеров, планшетов, цифровых камер и современных транспортных средств (электромобили и др.). Для изготовления анодов в литий-ионных батареях для мобильных бытовых приборов и электромобилей используются в основном непокрытый сферический графит, сферический графит с покрытием (CSPG) и литий-ионная анодная паста.

Переход с бензиновых и дизельных двигателей на электрические рождает взрывной спрос на рынке аккумуляторов для электромобилей. В результате появился острый дефицит многих ключевых компонентов для производства современных литий-ионных аккумуляторов. Дополнительный фактор роста спроса — увеличение габаритных размеров батарей. В 2012 г. для батареи емкостью 5,4 Вт.ч требовалось около 9 г графита, в 2015 г. для батареи емкостью 11,1 Вт.ч 19 г, в настоящее время для батареи электромобиля среднего размера требуется около 25 г сферического графита. Для изговления батарей используется как природный, так и синтетический графит. Однако большинство производителей автомобилей предпочитают батареи из синтетического графита, который имеет высокую степень чистоты. Поэтому более 55 % объема рынка общих поставок составляют батареи с искусственным графитом.

Мировой рынок электронных гаджетов и электромобилей, по прогнозам экспертов, к 2025 г. увеличится в 14 и 20 раз. К 2025 г. продажи электромобилей в мире достигнут 31 млн.

Графит для солнечных батарей. В последние годы на рынке альтернативных источников энергии быстро растет производство энергии с помощью солнечных батарей. В Европе в 2020 г. намечено получать от солнечных батарей около 25 % электроэнергии, а к 2040 г. увеличить до 40 %. Китай сегодня производит более 80 % мирового производства солнечных батарей и обеспечивает на своей территории производство более 43 ГВт солнечной генерации. У США и Европы также большие планы по получению «зеленой» энергии. По данным МЭА (Международное энергетическое агентство), с помощью фотоэлектрической солнечной энергетики общий мировой объем солнечной энергетики общим производство объем солнечной растерительного объем солнечной солнечном солнечном солнечном солнечном солнечном солнечном солнечном солнеч

гетики в 2018 г. превысил 500 ГВт. В пятерку мировых лидеров по действующим мощностям солнечной энергетики входят Китай (176,1 ГВт), США (62,2 ГВт), Япония (56 ГВт), Германия (45,4 ГВт) и Индия (32,9 ГВт). В России в 2017 г. с помощью солнечных батарей получено 402,9 ГВт электроэнергии, причем максимальное количество автономных СЭС установлено в Якутии, Сибири и в других малодоступных регионах, в которых существуют проблемы из-за дороговизны доставки топлива.

Графит для ядерных реакторов. Разработаны специальные сорта синтетического графита (Gilsocarbon и др.), которые применяются в качестве матрицы и замедлителя нейтронов в ядерных реакторах. Такой графит имеет низкое нейтронное сечение и не должен содержать материалы, поглощающие нейтроны (бор и др.) [7].

ГРАФЕН И ЕГО ПРИМЕНЕНИЕ

Традиционный графит представляет аллотропную модификацию и имеет слоистую структуру с несколькими слоями углерода, которые хорошо упакованы друг в друге. Отдельный слой из этих слоев называется графеном (рис. 5). В соответствии с его размерами (1–100 нм) лист графена считается наночастицей. За получение ультратонкого сверхпрочного материала в виде графена в 2010 г. российские ученые Андрей Гейм и Константин Новоселов получили Нобелевскую премию.

Графен обладает многими необычными свойствами [8]:

- является самым прочным материалом на Земле. Его прочность в 300 раз выше, чем у стали. Лист графена площадью в 1 м² и толщиной всего в 1 атом способен удерживать предмет массой 4 кг:
- имеет высокую удельную поверхность.
 Несколько граммов графена способны покрыть всю поверхность футбольного поля;
- является одним из самых легких материалов, в 6 раз легче пуха;
- обладает высокой теплопроводностью 5000 Вт/(м·К), которая в 10 раз превышает теплопроводность меди;
- в виде пленки обладает способностью пропускать молекулы воды и задерживать все остальные;
- имеет высокую оптическую прозрачность в широком диапазоне (от ультрафиолетового до дальнего инфракрасного) при незначительной степени поглощения (2,3 %);
- благодаря высокой гибкости может быть использован для производства нитей и других веревочных структур. Тонкая графеновая «веревка» по прочности аналогична толстому стальному канату.

Исходя из уникальности свойств графена,

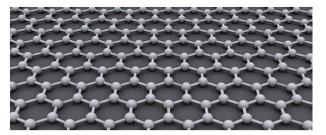


Рис. 5. Кристаллическая решетка графена

планируется широкое его использование, в том числе в области нанотехнологий, в космической индустрии, в атомной и солнечной энергетике.

Электроника. Создание гибких экранов, а также чипов и устройств, работающих на терагерцевых частотах, что позволяет повысить скорость быстродействия компьютеров при наличии тонких экранов (тоньше бумажного листа). Процессоры на основе графена обладают увеличенной мощностью (в 3–5 раз), а время зарядки батареи будет составлять несколько минут.

Биомедицина и здравоохранение. Диагностика онкологических заболеваний. Ученые Китая и США провели исследования по созданию биосенсоров для обнаружения раковых клеток и нашли способы поражения раковых стволовых клеток с помощью графена без нанесения вреда здоровым клеткам.

Экология. Благодаря графену можно внедрить мембраны для опреснителей морской воды и решить проблему нехватки воды во многих странах. Графеновая мембрана с мельчайшими отверстиями позволяет отфильтровывать частицы соли при фильтрации больших объемов воды.

Аэрокосмическая отрасль. Использование графена позволяет снизить расход топлива и повысить безопасность полетов за счет создания условий всепогодного использования.

ЗАКЛЮЧЕНИЕ

- По итогам 2019 г. мировой рынок графита оценивался в 14,3 млрд долл. с перспективой увеличения его объема в 2020–2027 гг. на 5,6 % ежегодно и достижением общего объема рынка в 2027 г. 22 млрд долл.
- Крупнейшими странами разработчиками графитовых месторождений являются: Китай (добыча 780 тыс. т), Индия (170 тыс. т), Бразилия (95 тыс. т), Канада (30 тыс. т), Мозамбик (23 тыс. т), Россия (17 тыс. т), Украина (13 тыс. т).
- Кристаллический графит в России добывается в основном на Тайгинском месторождении (~10 тыс. т/год). В 2021-2023 гг. намечено ввести в эксплуатацию два новых месторождения (Союзное и Ихала).
- В различных отраслях промышленности применяются разные виды графита: при-

родный (тигельный, литейный, электродный элементный, аккумуляторный и др.) и синтетический (пиролитический, конструкционный, изостатического прессования, силицированный, сферический и др.).

Библиографический список

- 1. https://marketpublishers.ru/report/industry/raw_materials_fillers/graphite natural_market_review.html/ Обзор мирового рынка графита и перспективы его развития до 2029 г.
- 2. **Кащеев, И.** Д. Исследование структуры и свойств графитов для производства огнеупоров. Часть 1. Физико-химические исследования графитов различных месторождений / И. Д. Кащеев, К. Г. Земляной, В. М. Устьянцев, С. А. Поморцев // Новые огнеупоры. 2015. № 1. С. 8–13. https://doi.org/10.17073/1683-4518-2015-11-8-13.
- 3. **Черепанов, А. А.** Минералого-геохимические свойства графита и благороднометалльная минерализация месторождения Союзного (Дальний Восток) / *А. А. Черепанов, Н. В. Бердников // Тих*оокеанская геология. 2013. Т. 32, № 4. С. 80–87.
- 4. *Кащеев, И. Д.* Исследование структуры и свойств графитов для производства огнеупоров. Часть 2.

- Свойства периклазо- и корундоуглеродистых огнеупоров при введении в их состав графитов различных производителей / И. Д. Кащеев, К. Г. Земляной, С. А. Поморцев // Новые огнеупоры. — 2016. — № 1. — C.17–21.https://doi.org/10.17073/1683-4518-2016-1-17-21.
- 5. Земляной, К. Г. Исследование возможности оценки технологических свойств графита / К. Г. Земляной, И. Д. Кащеев, В. М. Устьянцев // Новые огнеупоры. 2015. $\gg 3.$ С. 101-108.
- 6. **Черных**, B. A. 400 марок углеродных материалов и что из них можно изготовить : справ. пособие / B. A. Черных, K. Π . Виноградова. M. : Научные технологии, 2017. 63 с.
- 7. **Жмуриков**, *Е. И.* Графит в науке и ядерной технике / *Е. И. Жмуриков*, *И. А. Бубненков*, *В. В. Дрёмов* [и др.]. Новосибирск : изд-во Сибирск.отд-ния Рос. акад. наук, 2013. 197 с.
- 8. **Арсенин, А.** Битва за графен: мировое состязание за лидерство в технологиях будущего / А. Арсенин, Ю. Стебунов. М.: Технологии, 2017. С. 74. ■

Получено 18.01.21 © В. А. Кононов, 2021 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Graphene 2021 — **Европейская конференция и выставка графена и 2D-материалов** 26–29 октября 2021 г. Гренобль, Франция

http://www.grapheneconf.com/2021/venue.php