Д. т. н. В. В. Кузин (⊠), д. т. н. С. Н. Григорьев

ФГБОУ ВО «Московский государственный технологический университет «Станкин», Москва, Россия

УДК 666.3:546'28'171]:621.914.22

ПРОЕКТИРОВАНИЕ КОНЦЕВЫХ КЕРАМИЧЕСКИХ ФРЕЗ ДЛЯ ИННОВАЦИОННЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ С УЧЕТОМ ИХ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ. ВЫБОР КЕРАМИКИ. Часть 3*

Изучена неоднородность напряжений на границах основных структурных элементов Si₃N₄-керамики в условиях нестационарной термоупругости. Приведены созданные рекомендации по выбору рациональной керамики для изготовления концевых керамических фрез, предназначенных для обработки деталей из труднообрабатываемых материалов.

Ключевые слова: концевая керамическая фреза, Si_3N_4 -керамика, нестационарная термоупругость, неоднородность напряжений, тепловое состояние.

ВВЕДЕНИЕ

В части 1 статьи [1] показана необходимость исследования теплового состояния и выявления неоднородности напряжений в поверхностном слое керамического лезвия фрез из Al_2O_3 - и Si_3N_4 -керамики в условиях действия циклической тепловой нагрузки. В части 2 статьи [2] эти исследования выполнены для лезвия фрезы из Al_2O_3 -керамики при нагреве. В настоящей работе поставлена цель — изучить тепловое состояние и неоднородность напряжений на границах основных структурных элементов Si_3N_4 -керамики при нагреве и, используя эти результаты в совокупности с результатами работы [5], обосновать выбор рациональной керамики для изготовления концевых керамических фрез [2–4].

МЕТОДИКА ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

В численных экспериментах использовали методику и расчетную схему, приведенную в статье [2]. Исследовали структурную неоднородность напряжений в керамике двух систем: система № 1 — $Si_3N_4-Y_2O_3-Si_3N_4-9\Pi741H-\Pi$ (зерно и матрица выполнены из Si_3N_4 , межзеренная фаза — из

В. В. Кузин

E-mail: dr.kuzinvalery@yandex.ru

Y₂O₃, слой на поверхности керамики — из сплава ЭП741H-П), система № 2 — TiC-Y₂O₃-Si₃N₄-ЭП741Н-П (зерно — из ТіС, межзеренная фаза — из Y_2O_3 , матрица — из Si_3N_4 , слой на поверхности керамики — из сплава ЭП741Н-П). Ссылки на справочники и монографии, из которых позаимствованы свойства этих материалов, приведены в публикации [3]. Керамическое лезвие нагружали сосредоточенной силой F = 0.02 H, β = 45°, распределенной силовой нагрузкой $P = 5.10^8$ Па и тепловым потоком $Q = 9.10^8$ Вт/м². При этом с поверхностей керамической пластины, свободных от теплового потока, осуществляли теплоотвод в окружающую среду с коэффициентом $h = 10^5$ Вт/(м²·град). Расчеты выполняли в автоматизированной системе термопрочностных расчетов RKS-ST v.1.0 [4]. Для количественной оценки температур T и интенсивности напряжений σ_i использовали выделенные контрольные точки (КТ) [5], имевшие такое же расположение в поверхностях основных структурных элементов керамики, как в статье [2].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Установлено, что кривые, определяющие влияние времени нагрева τ на температуру T в КТ керамики систем № 1 и 2, имеют простую форму и состоят из двух характеристических участков. На первом характеристическом участке (этап нестационарной термоупругости) происходит резкое повышение температуры во всех КТ до T_1 за $\tau = 0.04$ с, на втором (этап стационарной термоупругости) температура стабилизируется на уровне T_1 и далее не изменяется. При охлаждении керамического лезвия происходит обрат-

^{*} Часть 1 статьи опубликована в журнале «Новые огнеупоры» № 10 за 2018 г., часть 2 — в № 4 за 2019 г.

ный процесс. Установлено, что значения T_1 для всех КТ керамики системы № 1 выше, чем системы № 2. Например, значение T_1 в КТ1 керамики системы № 1 составляет 1195 °C, а керамики системы № 2 — 917 °C.

Характер изменения T в поверхностях A и Γ керамики систем № 1 и 2 при ее выходе на стационарный режим показан на рис. 1. В заштрихованной области расположены кривые, определяющие характер изменения T в поверхностях E и E сопоставление температур в поверхностном слое керамики систем № 1 и 2 выявило их значительную разницу. В керамике системы № 1 разница между наибольшими и наименьшими значениями температур в поверхностях E и E составляет 630, 649, 670 и 688 °C, в керамике системы № 2 эта разница составляет соответственно 300, 388, 471 и 555 °C.

Тепловое состояние лезвия фрезы из керамики систем № 1 и 2 во время нагрева определяет характер его упругой деформации, имеющей вид «выпучивания». Наибольшей деформации подвергается центральный участок на поверхности зерна и соответственно керамического лезвия. Следует отметить, что до нагрева действует только силовая нагрузка (F = 0,0001 H, $\beta = 45^{\circ}$, $P = 5.10^{\circ}$ Па), которая приводит к упругой деформации керамического лезвия в виде «вдавливания».

На рис. 2 показан характер изменения σ_i в разных поверхностях керамики систем № 1 и 2 до нагрева (действует только силовая нагрузка) и после нагрева (действует комбинированная нагрузка).

Установлено, что вид кривых, описывающих изменение σ_i в поверхности A, до нагрева практически одинаков для керамики систем № 1 и 2 (см. рис. 2, a, δ). Однако нагрев (принципиально не изменяя вид этих кривых) уменьшает значения σ_i для керамики системы № 1 и увеличивает значения σ_i для керамики системы № 2 по сравнению с исходными значениями до нагрева: до нагрева керамики системы № 1 они изменяются от 468 до 876 МПа при $\sigma_{\rm cp}=649$,6 МПа, а после нагрева — от 370 до 892 МПа при $\sigma_{\rm cp}=598$,6 МПа (рис. 2, a); до нагрева керамики системы № 2 они изменяются от 504 до 922

МПа при $\sigma_{cp} = 687.8$ МПа, а после нагрева — от 573 до 910 МПа при $\sigma_{cp} = 707.2$ МПа (см. рис. 2, б).

Форма кривых, определяющих характер изменения σ_i в поверхности E керамики систем № 1 и 2 до и после нагрева, существенно различается (см. рис. 2, e, e). При этом средние значения σ_i для керамики системы № 1 до и после нагрева выше, чем у керамики системы № 2: до нагрева керамики системы № 1 они изменяются от 450 до 821 МПа при $\sigma_{cp} = 591,8$ МПа, а после нагрева — от 503 до 703 МПа при $\sigma_{cp} = 595,9$ МПа (см. рис. 2, e); до нагрева керамики системы № 2 они изменяются от 411 до 693 МПа при $\sigma_{cp} = 539,6$ МПа, а после нагрева — от 364 до 677 МПа при $\sigma_{cp} = 520$ МПа (см. рис. 2, e).

Характер изменения σ_i в поверхности B керамики систем № 1 и 2 до и после нагрева практически одинаков (см. рис. 2, ∂ , e). Значения σ_i для керамики системы № 1 до и после нагрева несколько выше, чем у керамики системы № 2: до нагрева керамики системы № 1 они изменяются от 405 до 815 МПа при $\sigma_{\rm cp} = 564,6$ МПа, а после нагрева — от 403 до 794 МПа при $\sigma_{\rm cp} = 559,3$ МПа (см. рис. 2, ∂); до начала нагрева керамики системы № 2 они изменяются от 387 до 739 МПа при $\sigma_{\rm cp} = 545,4$ МПа, а после нагрева — от 415 до 657 МПа при $\sigma_{\rm cp} = 525,6$ МПа (см. рис. 2, e).

Характер изменения σ_i в поверхности Γ керамики системы № 1 до и после нагрева практически одинаков, а вид этих кривых (до и после нагрева) для керамики системы № 2 существенно различается. Значения σ_i в этой поверхности керамики системы № 1 до нагрева выше и после нагрева ниже, чем у керамики системы № 2: до нагрева керамики системы № 1 они изменяются от 415 до 946 МПа при $\sigma_{\rm cp} = 612,8$ МПа, а после нагрева — от 349 до 959 МПа при $\sigma_{\rm cp} = 566,7$ МПа (см. рис. 2, \varkappa); до нагрева керамики системы № 2 они изменяются от 389 до 904 МПа при $\sigma_{\rm cp} = 574,5$ МПа, а после нагрева — от 389 до 874 МПа при $\sigma_{\rm cp} = 637,1$ МПа (см. рис. 2, 3).

Анализ результатов численных экспериментов показал, что керамика на основе оксида алюминия систем № 1 (Si_3N_4 – Y_2O_3 – Si_3N_4 –ЭП741H-П) и № 2 (TiC– Y_2O_3 – Si_3N_4 –ЭП741H-П) выходит на стационар-

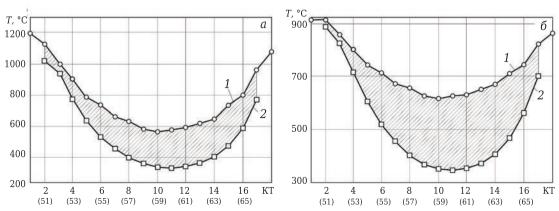


Рис. 1. Характер изменения T в поверхностях A (1) и Γ (2) керамики систем № 1 (a) и № 2 (δ) после нагрева

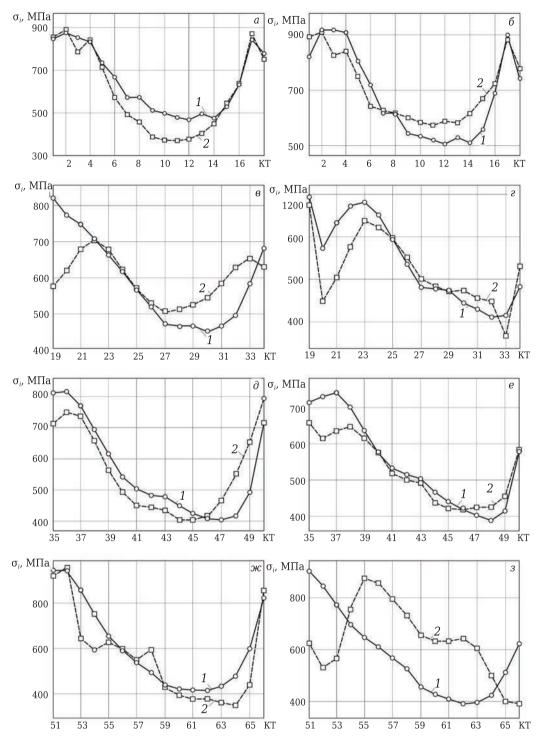


Рис. 2. Характер изменения σ_i в поверхностях A (a, δ) , B (e, ϵ) , B (∂, e) и Γ (ж, 3) керамики систем № 1 (a, e, ∂, ж) и № 2 $(6, \epsilon, e, 3)$ до (1) и после нагрева (2)

ный тепловой режим за время $\tau=0.04$ с. Установлено, что высокие температуры формируются в поверхностном слое керамики системы N=1.

Характер изменения σ_i в поверхностях A, B и B керамики систем № 1 и 2 до и после нагрева практически одинаков. В поверхности Γ керамики системы № 1 до и после нагрева характер изменения σ_i также практически одинаков, однако в поверхности Γ керамики системы № 2

характер изменения σ_i до и после нагрева существенно различается.

ЗАКЛЮЧЕНИЕ

Созданные рекомендации по выбору рациональной керамики для изготовления концевых керамических фрез, предназначенных для обработки деталей из труднообрабатываемых материалов,

основаны на результатах сравнения температур и неоднородности напряжений в поверхностях A, E, E и E керамики четырех систем (E03–E107-E11-E111-E111-E12, Si3N4-E17-E17-E18

Спозиций теплового состояния Si₃N₄-керамика является более подходящим материалом для изготовления монолитных керамических фрез, чем Al_2O_3 -керамика. Прежде всего, это связано с тем, что наибольшая температура при выходе на стационарный тепловой режим в керамике системы $Si_3N_4-Y_2O_3-Si_3N_4-Э\Pi 741H-\Pi$ на 20 % ниже, чем в керамике системы Al_2O_3 –MgO– Al_2O_3 –ЭП741H-П.Разница между наибольшей и наименьшей температурой в поверхностях A, B, B и Γ керамики системы $Si_3N_4-Y_2O_3-Si_3N_4-Э\Pi 741H-\Pi$ на 42, 31, 19 и 10 % соответственно ниже, чем в керамике системы Al_2O_3 -MgO- Al_2O_3 -ЭП741Н-П. Учитывая одинаковые расстояния, на которых формируются эти температуры в поверхностях структурных элементов керамики, можно утверждать, что температурные градиенты в поверхностном слое керамики системы $Si_3N_4-Y_2O_3-Si_3N_4-Э\Pi 741H-\Pi$ также на 10-40 % ниже, чем в керамике системы $Al_2O_3-MgO-Al_2O_3-9\Pi741H-\Pi$.

С позиций напряженного состояния Si_3N_4 -керамика также наиболее предпочтительна для изготовления монолитных керамических фрез, чем Al_2O_3 -керамика. Этот вывод сделан на осно-

Библиографический список

- 1. **Кузин, В. В.** Проектирование концевых керамических фрез для инновационных технологических процессов с учетом их напряженно-деформированного состояния. Выбор керамики. Часть 1 / В. В. Кузин, С. Н. Григорьев, М. А. Волосова // Новые огнеупоры. 2018. № 10. С. 68–73.
- 2. **Кузин, В. В.** Проектирование концевых керамических фрез для инновационных технологических процессов с учетом их напряженно-деформированного состояния. Выбор керамики. Часть 2 / B. В. Кузин, С. Н. Григорьев // Новые огнеупоры. 2019. 84. C. 65-69.
- 3. **Кузин, В. В.** Инструменты с керамическими режущими пластинами / В. В. Кузин. М. : Янус-К, 2006. 160 с.

ве сравнения наибольших значений о; и разницы между наибольшим и наименьшим значением σ_i в поверхностях A, B, B и Γ керамики четырех систем. Установлено, что наибольшие значения о; и разница между наибольшим и наименьшим значением σ_i в поверхностях A, B, B и Γ до нагрева в керамике систем Al_2O_3 –MgO– Al_2O_3 –ЭП741Н-П и $Si_3N_4-Y_2O_3-Si_3N_4-Э\Pi 741H-\Pi$ практически одинаковы и разница не превышает 1 %. После нагрева эти показатели в керамике системы Si₃N₄-Y₂O₃- Si_3N_4 –ЭП741Н-П меньше, чем в керамике Al_2O_3 – $MgO-Al_2O_3-ЭП741H-П$, на 6, 14, 31 и 11 % соответственно. При этом разница между наибольшим и наименьшим значением σ_i в поверхности Aпосле нагрева в керамике систем Al₂O₃-MgO- Al_2O_3 –ЭП741Н-П и Si_3N_4 – Y_2O_3 – Si_3N_4 –ЭП741Н-П практически одинакова, а в поверхностях Б, В и Γ керамики системы $Si_3N_4-Y_2O_3-Si_3N_4-9\Pi741H-\Pi$ ниже, чем в керамике системы Al₂O₃-MgO- Al_2O_3 –ЭП741Н-П, на 85, 72 и 13 % соответственно.

При анализе керамики систем TiC-MgO-Al₂O₃-ЭП741Н-П и $TiC-Y_2O_3-Si_3N_4-ЭП741$ Н-П выявлено, что до нагрева наибольшие значения σ_i и разница между наибольшим и наименьшим значением о; в поверхностях A, B, B и Γ этих систем практически одинаковы и разница не превышает 4 %. Однако после нагрева наибольшие значения σ_i в поверхностях Б и B керамики системы $TiC-Y_2O_3-Si_3N_4-Э\Pi 741H-\Pi$ меньше, чем в керамике системы TiC-MgO-Al₂O₃-ЭП741Н-П, на 73 и 62 % соответственно. В поверхностях A и Γ керамики системы $TiC-MgO-Al_2O_3-$ ЭП741Н-П после нагрева наибольшие значения σ_i меньше, чем в керамике $TiC-Y_2O_3-Si_3N_4-9\Pi741H-\Pi$, на 12 и 7 % соответственно. При этом разница между наибольшим и наименьшим значением оі в поверхностях Б и В керамики системы ТіС-Y₂O₃- Si_3N_4 –ЭП741Н-П меньше, чем в керамике TiC–MgO– Al_2O_3 –ЭП741Н-П, на 58 и 53 % соответственно. В поверхностях A и Γ керамики системы TiC-MgO- Al_2O_3 -ЭП741Н-П после нагрева наибольшие значения σ_i меньше, чем в керамике $TiC-Y_2O_3-Si_3N_4-$ ЭП741Н-П, на 31 и 9 % соответственно.

* * *

Исследование выполнено за счет гранта Российского научного фонда (проект № 18-19-00599).

4. **Grigor'ev, S. N.** Automated thermal-strength calculations of ceramic cutting plates / S. N. Grigor'ev, V. I. Myachenkov, V. V. Kuzin // Russian Engineering Research. — 2011. — Vol. 31, Ne 11. — P. 1060–1066.

Григорьев, С. Н. Автоматизированная система термопрочностных расчетов керамических режущих пластин / С. Н. Григорьев, В. И. Мяченков, В. В. Кузин // Вестник машиностроения. — 2011. — № 11. — С. 26–31.

5. *Kuzin, V.* Method of investigation of the stress-strain state of surface layer of machine elements from a sintered nonuniform material / *V. Kuzin, S. Grigoriev* // Applied Mechanics and Materials. — 2014. — Vol. 486. — P. 32–35. ■

Получено 14.05.19

© В. В. Кузин, С. Н. Григорьев, 2019 г.