НАУЧНЫЕ ИССЛЕДОВАНИЯ И РАЗРАБОТКИ

Д. т. н. **А. В. Хмелёв** (🖂)

Рижский технический университет, Институт силикатных материалов, г. Рига, Латвия

удк 549.613.4+661.862+546.271]:621.039.542.33 СПЕКАНИЕ СМЕСИ ПОРОШКОВ В СИСТЕМЕ AI_2O_3 -Si O_2 - β -SiAION-TiC-Dy $_2O_3$ ПЛАЗМЕННО-ИСКРОВЫМ МЕТОДОМ ПРИ ВЫСОКОЙ НАГРУЗКЕ ПРЕССОВАНИЯ

Показано влияние добавки 2 и 5 мол. % Dy_2O_3 в ходе плазменно-искрового спекания при нагрузке прессования 60 МПа в интервале 1200–1600 °C на фазовый состав, микроструктуру, относительную плотность, открытую пористость, линейную усадку, физико-механические свойства и линейную корреляцию модуля упругости и ударной вязкости муллит-сиалон-TiC-образцов. Синтезированные порошки сиалона и TiC характеризуются соответственно интенсивной кристаллизацией. Увеличение содержания Dy_2O_3 от 2 до 5 мол. % в спекаемом составе с соотношением β -SiAlON / TiC = 70 / 30 мол. % способствует интенсивной муллитизации, активному приросту сиалона и менее интенсивному приросту TiC в интервале 1200–1600 °C, а также приводит к формированию менее плотно спекшейся кристаллической микроструктуры образца, содержащей частицы кристаллического TiO₂ круглой формы, поры и стеклообразную фазу на границах областей муллита-сиалона-твердого раствора TiC при 1500 °C. Образец с 5 мол. % Dy₂O₃ имеет меньшие значения относительной плотности, линейной усадки, физико-механических свойств в диапазоне 1200–1600 °C, меньшую стойкость к трещино образованию с формированием микротрещин при 1500 °C и немного большую линейную корреляцию модуля упругости и ударной вязкости в интервале 1200–1600 °C.

Ключевые слова: муллит-сиалон-ТіС, добавка Dy2O3, плазменно-искровое спекание.

введение

28

лазменно-искровое спекание смесей оксидного и безоксидного порошков, например муллит-TiC, Al₂O₃-SiO₂-TiC-ZrC, Al₂O₂-SiO₂-TiC-TiN при небольшой нагрузке прессования (20-30 МПа) и Al₂O₃-BN, муллит-BN при значительной нагрузке прессования (100 МПа), в диапазоне 1200-1700 °С базируется в основном на твердофазном спекании [1–5]. При этом процесс спекания определяется интенсивностью диффузии вещества между спекаемыми частицами в зависимости от их размеров и площади контакта и связан с образованием продуктов реакции на поверхности спекаемых частиц, что замедляет превращение исходных компонентов в конечные продукты и приводит к неравномерной микроструктуре образцов [2, 5].

В связи с этим смеси оксидного и безоксидного порошков спекают плазменно-искровым методом при значительной нагрузке прессования (75 МПа) в интервале 1200-1600 °C [6]. Та-

> ⊠ A. B. Хмелёв E-mail: aleksejs.hmelov44@gmail.com, aleksejs.rtu1@inbox.lv

кие условия спекания способствуют активному переходу оксидного и безоксидного порошков (в зависимости от его содержания в спекаемой смеси) в вязкотекучее (пластическое) состояние [6]. Однако формирующиеся расплавы компонентов не образуют общую эвтектику и продуктов реакции (кристаллических фаз), а только взаимно насыщаются, причем степень взаимного насыщения расплавов и диффузия вещества через соответствующие расплавы компонентов значительно зависят от вязкости компонентов [6]. В результате формируется различно спекшаяся микроструктура, по-разному влияющая на трещиностойкость и физико-механические свойства материала [6]. В то же время значения свойств такого материала выше по сравнению с показателями свойств материалов, полученных в ходе твердофазного спекания смесей оксидного и безоксидного порошков при различной нагрузке прессования [2-4].

В силу вышеуказанных причин в плазменноискровом спекании, аналогично традиционному спеканию смеси оксидных порошков [7], используют добавки оксидных порошков (Y₂O₃, Yb₂O₃, Gd₂O₃, Dy₂O₃), формирующие с оксидным и безоксидным порошками легкоплавкие эвтектики и твердые растворы в виде стабильных в твердой

фазе или нестабильных в жидкой фазе соединений [8-12]. Использование данного вида спекания и оксидных добавок с малыми катионными радиусами металлов наиболее стимулирует диффузию (внедрение) соответствующих катионов металлов в структуру исходных компонентов с активным образованием твердого раствора в твердой фазе [8, 9], который формируется также через образование и распад соединений разной стехиометрии в твердой фазе [8, 9]. Более интенсивно легкоплавкая эвтектика и твердый раствор формируются через образование и распад соединений промежуточного состава в жидкой фазе [10-12]. Легкоплавкая эвтектика стимулирует диффузию вещества через эвтектический расплав, способствуя развитию кристаллических фаз (например, муллита, кубического ZrO₂, ZrB₂), vвеличивает плошаль контакта спекаемых частиц, способствуя наиболее равномерному и полному спеканию смеси порошков. Образующийся через легкоплавкую эвтектику твердый раствор уплотняет и укрепляет структуру на границах областей оксидных и безоксидных кристаллических фаз в ходе плазменно-искрового спекания, в результате чего увеличиваются упругие свойства и твердость материалов [10-12].

Цель работы — изучение влияния добавки 2 и 5 мол. % Dy_2O_3 в ходе плазменно-искрового спекания при нагрузке прессования 60 МПа в интервале 1200–1600 °С на фазовый состав, микроструктуру, относительную плотность, открытую пористость, линейную усадку, физикомеханические свойства и линейную корреляцию модуля упругости и ударной вязкости образцов муллит-сиалон-TiC.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика получения смеси Al₂O₃ и SiO₂, порошков сиалона и TiC, приготовления смесей оксидного и безоксидных порошков с добавкой Dy₂O₃

Для приготовления смеси использовали порошки Al_2O_3 (Aldrich, Belgium, чистота 97,5 %) и SiO₂ (Merck, Germany, чистота 97,5 %) в массовой пропорции (см. таблицу), отвечающей стехиометрии муллита, равной 3:2, перемешивали в планетарной мельнице (RETSCH PM 400) в течение около 10 мин с получением однородной смеси.

Порошки сиалона и ТіС синтезировали в плазмохимической установке в вакууме при 1600 °С в течение 1 ч с использованием соответственно порошков β -Si₃N₄ (Aldrich, Belgium,

чистота 98,0 %), AlN (Merck, Germany, чистота 97,5 %) и Al₂O₃ (Aldrich, Belgium, чистота 99,5 %), TiO₂ (Aldrich, Belgium, чистота 98,0 %) и углерода (Merck, Germany, чистота 97,5 %) по реакциям: Si₃N₄ + AlN + Al₂O₃ \rightarrow Si₃Al₃O₃N₅ (x = 3) и TiO₂ + 2C \rightarrow TiC + CO₂.

Порошки сиалона и ТіС с добавкой 2 и 5 мол. % Dy₂O₃ (Aldrich, Belgium, чистота 99,5 %) перемешивали в планетарной мельнице (RETSCH PM 400) в течение 10 мин с получением однородных смесей (см. таблицу). Полученную смесь порошков Al₂O₃ и SiO₂, содержащую Dy₂O₃, перемешивали с приготовленными смесями порошков сиалона, ТіС и Dy₂O₃ в планетарной мельнице (RETSCH PM 400) в течение 10 мин.

Смеси насыпали в графитовую прессформу диаметром 30 мм и спекали плазменноискровым методом (SPS, Summimoto, model SPS 825. CE, Dr. Sinter, Japan) в вакууме (6 Па) при нагрузке прессования 60 МПа с выдержкой 2 мин в диапазоне 1200–1600 °С со скоростью нагрева 100 °С/мин.

Методика определения свойств полученных порошков и спеченных образцов

Фазовый состав синтезированных порошков и спеченных образцов, а также микроструктуру, открытую пористость $\Pi_{\text{отк}}$, относительную плотность $\rho_{\text{отн}}$, модуль упругости *E*, твердость по Виккерсу *HV*, площадь поверхности отпечатка *S* каждого образца (см. таблицу) рассчитывали методом, описанным в статье [3]. Теоретическая плотность компонентов порошков, г/см³: муллит 3,17, β-Si₃Al₃O₃N₅ 3,09, ТіС 4,93. Ударную вязкость *K*_{lc} образцов определяли методом, описанным в статье [13].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Фазовый состав порошков сиалона и TiC, синтезированных плазмохимическим способом, показаны на рентгенограммах (рис. 1).

Состав фаз синтезированных порошков представлен в основном интенсивными дифракционными максимумами β-SiAlON и TiC с незначительным количеством непрореагировавшего AlN и оксикарбида титана. Данная фаза является нестехиометрическим составом карбида титана и содержит определенное количество непрореагировавших порошков TiO₂ и C.

Фазовый состав образцов смесей исходных компонентов, спеченных плазменно-искровым методом в диапазоне 1200-1600 °С, показан на рис. 2.

Массовые пропорции и соотношение компонентов в исходных составах

Соостав*	Масса компонентов, г, на 100 г смеси		Соотношение	
	β -Si ₃ Al ₃ O ₃ N ₅ / TiC / Dy ₂ O ₃	3Al ₂ O ₃ / 2SiO ₂ / Dy ₂ O ₃	β -Si ₃ Al ₃ O ₃ N ₅ / TiC / Dy ₂ O ₃	3Al ₂ O ₃ ·2SiO ₂ / Dy ₂ O ₃
M70SiAl30TiC2Dy	91,67 / 8,33 / 3,17	71,8 / 28,2 / 4,27	28,92 / 2,62 / 1	23,42 / 1
M70SiAl30TiC5Dy	91,67 / 8,33 / 7,92	71,8 / 28,2 / 10,68	11,57 / 1,05 / 1	9,36 / 1
* Для обоих составов содержание, мол. %: β-Si ₃ Al ₃ O ₃ N ₅ 70, TiC 30.				

Рис. 1. Фазовый состав порошков сиалона (*a*) и ТіС (б), синтезированных плазмохимическим способом при 1600 °C: TiC_xO_y — оксикарбид титана

Рис. 2. Фазовый состав спеченных образцов составов M70SiAl30TiC2Dy (*a*) и M70SiAl30TiC5Dy (*б*) в диапазоне 1200–1600 °С: *M* — муллит (3Al₂O₃·2SiO₂)

В образцах с разным соотношением β-SiAlON и TiC с увеличением количества Dy₂O₃ от 2 до 5 мол. % наблюдаются интенсивная муллитизация и увеличение сиалона в интервале 1200-1600 °C. Активная муллитизация обусловлена формированием легкоплавкой эвтектики состава Dy₃(Al, Si)₅O₁₂, образующейся через взаимодействие Al₂O₃ и SiO₂ с добавкой Dy₂O₃ в системе Al₂O₃-SiO₂-Dy₂O₃ [12], что способствует интенсивному структурированию и формированию стехиометрического состава муллита. При этом инициация прироста муллита в образце с 5 мол. % Dy₂O₃ наблюдается при 1200 °C в отличие от аналогичного образца с 2 мол. % Dy₂O₃, где интенсивная муллитизация начинается при 1250 °С. Увеличение сиалона связано с образованием легкоплавкой эвтектики между значительным количеством Si₃N₄ в составе сиалона и добавкой Dy₂O₃, состоящей из оксинитрида состава Si₂N₂O, в системе Al₂O₃-SiO₂-Si₃N₄-Dy₂O₃ [12]. В образце с 5 мол. % Dy₂O₃ увеличение β-SiAlON наблюдается при 1200 °C, в образце с 2 мол. % Dy₂O₃ — при 1250 °C. Увеличение данных кристаллических фаз дополнительно стимулируется пластической деформацией при нагрузке прессования 60 МПа с ростом температуры.

Увеличение ТіС в образце с 5 мол. % Dy_2O_3 наблюдается при 1250 °С, а в образце с 2 мол. % Dy_2O_3 — при 1300 °С (см. рис. 2, *a*). Это обусловлено образованием твердого раствора ТіС через формирующуюся легкоплавкую эвтектику в системе Al_2O_3 -SiO₂-TiO₂-Dy₂O₃, стимулирующую диффузию (внедрение) Dy^{3+} в структуру ТіС с замещением Ti⁴⁺ на Dy^{3+} до 1400 °С, образование и распад промежуточных соединений Dy_2TiO_5 и $Dy_2Ti_2O_7$ при растворении ТіС в Dy_2O_3 в диапазоне 1400-1600 °С [8].

Увеличение Dy₂O₃до 5 мол. % вызывает побочный процесс, связанный с окислением TiC с образованием кристаллического TiO₂* при 1200 °C и наиболее интенсивным развитием данной фазы в диапазоне 1400-1600 °С (см. рис. 2, б), в образце с 2 мол. % Dy₂O₃ в интервале 1200-1600 °C фаза TiO₂ отсутствует (см. рис. 2, *а*). В интервале 1400-1600 °С интенсивность образования ТіС снижается (см. рис. 2, б). Одновременно кристаллический TiO2 образуется через структурирование в твердой фазе до 1400 °С и вязкое течение расплава TiO₂ в диапазоне 1400-1600 °C. Это коррелирует с интенсивностью дифракционных максимумов TiO₂ в каждом из температурных интервалов данного образца (см. рис. 2, б). При этом на рентгенограмме (см. рис. 2, б) заметно небольшое количество дифракционных максимумов TiO₂. В результате менее активно развивается твердый раствор TiC, его окисле-

30

^{*} Кристаллический TiO₂ образуется как отдельная фаза независимо от формирования легкоплавкой эвтектики в системе Al₂O₃-SiO₂-TiO₂-Dy₂O₃ в интервале 1200-1600 °C.

ние не оказывает существенного влияния на структурирование и развитие TiC. Это объясняется активным формированием легкоплавкой эвтектики в системе Al₂O₃-SiO₂-Si₃N₄-Dy₂O₃ и снижением интенсивности окисления TiC при добавлении Dy₂O₃ в спекаемый состав с 5 мол. % Dy₂O₃ в интервале 1400-1600 °C.

Микроструктуры спеченных плазменноискровым способом при 1500 °С образцов показаны на рис. 3.

Микроструктура образца с 2 мол. % Dy₂O₃ плотно спекшаяся, кристаллическая, состояшая из отдельных сильноспеченных участков в виде агломерированных областей с незначительным количеством мелких пор (см. рис. 3, а). В микроструктуре образца с 5 мол. % Dy₂O₃ заметны частицы кристаллического TiO₂ круглой формы, являющиеся продуктом окисления TiC при увеличении Dy₂O₃, и большее количество пор (см. рис. 3, б). В первом случае данный результат обусловлен формированием легкоплавких эвтектик в системах Al_2O_3 -SiO₂-Si₃N₄-Dy₂O₃ и Al_2O_3 - SiO_2 -TiO₂-Dy₂O₃ (см. рис. 2, *a*), стимулирующих активную диффузию вещества и заполнение пор с увеличением температуры. Во втором случае окисление TiC с ростом температуры, вызванное большей концентрацией Dy₂O₃, снижает интенсивность формирования легкоплавкой эвтектики между TiC и Dy₂O₃ и в меньшей степени — между муллитом, сиалоном и Dy₂O₃ (см. рис. 2, б). Это приводит к снижению спекания состава с ростом температуры (рис. 4) и формированию пор (см. рис. 3, б). На спекание также влияет механизм структурирования TiO₂, обуславливающий рост кристаллического TiO₂ в микроструктуре образца (см. рис. 2, б и 3, б), в интервале 1400-1600 °С.

В диапазоне 1200-1600 °С наблюдаются увеличение $\rho_{\text{отн}}$, Δl и уменьшение $\Pi_{\text{отк}}$ образцов. В образце состава M70SiAl30TiC2Dy уменьшается Потк, максимальная степень спекания 92,3 % достигается при 1600 °C. Это обусловлено наиболее равномерным и полным заполнением пор диспрозийсодержащей жидкой фазой до 1350 °С в системе Al_2O_3 -SiO₂-Si₃N₄-Dy₂O₃, образующейся при 1200 °С (см. рис. 2, а). Выше 1200 °С поры заполняются жидкой фазой в системе Al₂O₃-SiO₂-TiO₂-Dy₂O₃, формирующейся при 1300 °С (см. рис. 2, *a*). В интервале 1500-1600 °С спекание замедляется, значение Потк образца — 8,3 % при 1600 °С. Это объясняется спеканием образовавшихся через легкоплавкие эвтектики отдельных различно агломерированных участков (см. рис. 3, а).

Рост $\rho_{\text{отн}}$, Δl и снижение $\Pi_{\text{отк}}$ образца состава M70SiAl30TiC5Dy в интервале 1200-1600 °C неоднородный: интенсивно повышается до 1400 °C и плавно снижается в интервале 1400-1600 °C. Относительно интенсивное увеличение спекания данного состава до 1400 °C обусловлено заполнением пор диспрозийсодержащей жидкой фазой в системе Al₂O₃-SiO₂-Si₃N₄-Dy₂O₃ и

Рис. 3. Микроструктура спеченных при 1500 °С образцов составов М70SiAl30TiC2Dy (*a*), М70SiAl30TiC5Dy (*б*)

Рис. 4. Показатели $\rho_{\text{отн}}$, $\Pi_{\text{отк}}$ и Δl образцов в диапазоне 1200–1600 °С с разным содержанием добавки Dy_2O_3 : 1 — M70SiAl30TiC2Dy; 2 — M70SiAl30TiC5Dy

структурированием TiO₂ в твердой фазе (см. рис. 2, б). Плавное снижение спекания в интервале 1400-1600 °С объясняется менее активным заполнением пор жидкой фазой в системе Al_2O_3 -SiO₂-TiO₂-Dy₂O₃ и вязким течением расплава TiO₂ с рекристаллизацией кристаллического TiO₂ (см. рис. 2, б).

Активный рост *E*, *K*_{Ic} и *HV* образца состава M70SiAl30TiC2Dy с ростом температуры объясняется интенсивным увеличением содержания твердого раствора TiC до 1500 °C (см. рис. 2, *a*), уплотняющего и укрепляющего структуру, плотной компоновкой зерен муллита-сиалонатвердого раствора ТіС (см. рис. 5, *a*) с незначительной границей областей кристаллических фаз, отсутствием пограничного слоя диспрозийсодержащей стеклообразной фазы (см. рис. 5, *a*₁) и формированием равномерной плотно спекшейся микроструктуры с малым количеством отдельных мелких пор (см. рис. 3, *a*). В интервале 1500–1600 °С увеличение значений данных свойств незначительно (см. рис. 6). Это связано с практически полным структурированием твердого раствора ТіС (см. рис. 2, *a*). В результате в образце повышается сопротивление действию внешней приложенной нагрузки и трещиностойкость с отсутствием микротрещин вокруг отпечатка вдавливания (см. рис. 7, *a*).

Аналогичное развитие физико-механических свойств с меньшими значениями наблюдается в образце состава M70SiAl30TiC5Dy в диапазоне 1200–1400 °C. Это связано со схожим механизмом образования твердого раствора TiC до 1400 °C (см. рис. 2, б), уплотняющего и укрепляющего структуру на границах областей муллита-сиа-

Рис. 5. Микроструктуры границ областей муллита, сиалона и твердого раствора TiC–(Ti, Dy)C спеченных образцов составов M70SiAl30TiC2Dy (*a*, *a*₁) и M70SiAl30TiC5Dy (*б*–*б*₂)

Рис. 6. Показатели *E*, *K*_{Ic} и *HV* образцов в диапазоне 1200–1600 °С с разным содержанием добавки Dy₂O₃: *1* — M70SiAl30TiC2Dy; *2* — M70SiAl30TiC5Dy

Рис. 7. Отпечатки вдавливания при измерении *HV* спеченных при 1500 °C образцов составов M70SiAl30TiC2Dy (*a*) M70SiAl30TiC5Dy (*б*)

32

лона-ТіО_{2(кристал.)}-твердого раствора ТіС. Однако в интервале 1400-1600 °С наблюдается плавное снижение показателей свойств образца. Это вызвано менее активным образованием твердого раствора TiC в ходе возрастающего окисления ТіС добавкой 5 мол. % Dy₂O₃ с активным формированием кристаллического TiO₂ (см. рис. 2, б), влиянием пограничного слоя диспрозийсодержащей стеклообразной фазы толщиной примерно 2-3 нм между областями муллита-сиалона-твердого раствора ТіС (см. рис. 5, δ , δ_1) и локальной дислокацией зерен твердого раствора TiC (см. рис. 5, б₂). Как результат, развивается хрупкость в области дислокации зерен твердого раствора TiC с распространяющейся микротрещиной внутри и за пределами данной дефектной области по извилистой траектории (см. рис. 5, б₂). Это приводит к формированию менее плотно спекшейся микроструктуры образца с большим количеством пор (см. рис. 3, б). Активность двух последних процессов связана с формированием недостаточно плотной структуры твердого раствора ТіС. Заметна незначительная область дефектности (напряжения) в кристаллической фазе твердого раствора ТіС вблизи пограничного слоя диспрозийсодержащей стеклообразной фазы, не вызывающая образования микротрещины (см. рис. 5, б₂). Это обусловлено упругой дислокацией в данной кристаллической области твердого раствора TiC благодаря в основном развитым упругим свойствам пограничного слоя диспрозийсодержащей стеклообразной фазы, нейтрализующей возникающие напряжения и развивающей упругие свойства в кристаллической области твердого раствора TiC образца. Несмотря на ряд дефектных областей, в целом структура образца сохраняет целостность. Как результат, постепенно снижается сопротивление образца действию внешней приложенной нагрузки с сохранением высокой трещиностойкости с распространением микротрещин по относительно извилистой траектории (см. рис. 7, б).

Результаты линейной корреляции Е и К_{Ic} спеченных образцов показаны на рис. 8. Показатель величины R² для образца с 5 мол. % Dy₂O₃ немного выше, чем у образца с 2 мол. % Dy₂O₃ (см. рис. 8). При этом корреляция линейных прямых относительно точек (значений) Е и Кыс, а также их расположение относительно друг друга практически идентичны. Немного большее значение R² образца с 5 мол. % Dy₂O₃ обусловлено увеличением ТіС с небольшим количеством кристаллического TiO₂ с ростом температуры (см. рис. 2, δ) и уплотняющим влиянием диспрозийсодержащей стеклообразной фазы на структуру образца (см. рис. 5. б). Стеклообразная фаза на границах областей муллита-сиалона-твердого раствора TiC толщиной примерно 2-3 нм (см. рис. 5, б₁, б₂) увеличивает упругие свойства, которые компенсируют в определенной степени локальную хрупкость в области дислокации зерен твердого

Рис. 8. Линейная корреляция *Е* и *К*_{Ic} образцов в интервале 1200–1600 °С

раствора TiC вблизи пограничного слоя диспрозийсодержащей стеклообразной фазы образца (см. рис. 5, б₂). Активно формирующаяся легкоплавкая эвтектика в системе Al₂O₃-SiO₂-Si₂N₄-Dy₂O₃ с увеличением температуры расходуется в основном на спекание и наименее — в системе Al₂O₃-SiO₂-TiO₂-Dy₂O₃ (см. рис. 2, б), способствуя образованию меньшего количества диспрозийсодержащей стеклообразной фазы. Снижение локальной хрупкости в области дислокации зерен твердого раствора ТіС обусловлено упругими свойствами кристаллической области твердого раствора ТіС вблизи пограничного слоя диспрозийсодержащей стеклообразной фазы (см. рис. 5, б₂). Это связано с плотной компоновкой зерен муллита-сиалона-ТіО_{2(кристал.)}-твердого раствора ТіС (см. рис. 5, б) и уплотняющим и укрепляющим влиянием (Ti, Dy)С в структуре кристаллической области твердого раствора TiC (см. рис. 5, б₂). Это также влияет на корреляцию линейной прямой относительно точек E и K_{Ic} , значение R^2 образца с 5 мол. % Dy₂O₃.

ЗАКЛЮЧЕНИЕ

Показано влияние добавки 2 и 5 мол. % Dy₂O₃ в ходе плазменно-искрового спекания составов при нагрузке прессования 60 МПа в интервале 1200–1600 °С на фазовый состав, микроструктуру, относительную плотность, открытую пористость, линейную усадку, физико-механические свойства и линейную корреляцию модуля упругости и ударной вязкости образцов муллит-сиалон-TiC. Синтезированные порошки сиалона и TiC характеризуются интенсивной кристаллизацией.

Увеличение содержания Dy_2O_3 от 2 до 5 мол. % в спекаемом составе с соотношением β-SiAlON/ /TiC = 70/30 мол. % способствует интенсивной муллитизации, активному росту сиалона и менее интенсивному росту TiC в диапазоне 1200–1600 °C. При 1500 °C образец имеет менее плотно спекшуюся кристаллическую микроструктуру, содержащую частицы кристаллического TiO₂ круглой формы, поры и стеклообразную фазу на границах областей муллита-сиалона-твердого раствора TiC. Образец с 5 мол. % Dy_2O_3 показывает неоднородный рост и меньшие значения ρ_{отн}, Δl, физикомеханических свойств в диапазоне 1200–1600 °С, меньшую трещиностойкость с формированием микротрещин при 1500 °С и немного большую линейную корреляцию *E* и K_{Ic} в интервале 1200–1600 °С.

Библиографический список

1. **Ghahremani, D.** Densification, microstructure and mechanical properties of mullite–TiC composites prepared by spark plasma sintering / *D. Ghahremani, T. E. Ebadzadeh* // Ceram. Inter. — 2015. — Vol. 41, № 2. — P. 1957–1962.

2. *Hmelov, A. V.* Preparation of mullite–TiC–ZrC ceramic materials by a plasma-ARC method and their properties / *A. V. Hmelov //* Refract. Indust. Ceram. — 2017. — Vol. 57, № 6. — P. 645–650.

Хмелёв, А. В. Получение муллит-TiC-ZrC керамических материалов плазменно-искровым способом и их свойства / *А. В. Хмелёв* // Новые огнеупоры. — 2016. — № 12. — С. 36-41.

3. *Hmelov, A. V.* Preparation of mullite–TiC–TiN materials by a spark plasma method and their properties / *A. V. Hmelov* // Refract. Indust. Ceram. — 2017. — Vol. 58, № 4. — P. 418–425.

Хмелёв, А. В. Получение муллит-ТіС-ТіN материалов плазменно-искровым способом и их свойства / *А. В. Хмелёв* // Новые огнеупоры. — 2017. — № 8. — С. 22–30.

4. *Hotta, M.* Densification and microstructure of Al_2O_3 cBN composites prepared by spark plasma sintering / *M. Hotta, T. Goto //* J. Ceram. Soc. Jap. — 2008. — Vol. 116, Nº 6. — P. 744–748.

5. *Hotta, M.* Densification, phase transformation and hardness of mullite-cubic BN composites prepared by spark plasma sintering / *M. Hotta, T. Goto //* J. Ceram. Soc. Jap. -2010. - Vol. 118, $N \ge 2. - P. 157-160$.

6. *Hmelov, A. V.* Preparation of mullite-TiC-TiN materials by a spark plasma method with high compaction loading and their properties / *A. V. Hmelov* // Refract. Indust. Ceram. — 2018. — Vol. 59, № 3. — P. 262–268.

Хмелёв, А. В. Получение муллит-TiC-TiN материалов плазменно-искровым способом с высокой нагрузкой прессования и их свойства / *А. В. Хмелёв* // Новые огнеупоры. — 2018. — № 5. — С. 39-45.

7. *Hmelov, A.* Properties of mullite–zirconium ceramic obtained by spark plasma sintering / *A. Hmelov, I. Shteins //* Glass and Ceramics. — 2012. — Vol. 68, № 11/12. — P. 399–404.

8. *Lakiza, S.* Phase diagram of the ZrO₂-Gd₂O₃-Al₂O₃ system / *S. Lakiza, O. Fabrichnaya, Ch. Wang, M. Zinkewich* // J. Eur. Ceram. Soc. — 2006. — Vol. 26, № 3. — P. 233-246.

9. **Ryu, H. J.** Sintering behaviour and microstructures of carbides and nitrides for the inert matrix fuel by spark plasma sintering / H. J. Ryu, W. L. Young, I. C. Seung, H. H. Soon // J. Nucl. Mat. — 2006. — Vol. 352, № 1–3. — P. 341–348.

10. *Ceja-Cardenas, L.* Spark plasma sintering of α -Si₃N₄ ceramics with Al₂O₃ and Y₂O₃ as additives and its morphology transformation / *L. Ceja-Cardenas, J. Lemus-Ruiz, D. Jaramillo-Vigueras* // J. All. Comp. — 2010. — Vol. 501, № 2. — P. 345–351.

11. *Guo, S.* High-strength zirconium diboride-based ceramic composites consolidated by low temperature hot pressing / *S. Guo, Y. Kagawa //* Sci. Techn. Adv. Mat. — 2012. — Vol. 13, \mathbb{N} 4. — P. 1–6.

12. *Hmelov, A. V.* Production of a mullite-zirconia ceramic by the plasma-spark method / *A. V. Hmelov //* Refract. Indust. Ceram. — 2014. — Vol. 55, № 2. — P. 137–142.

Хмелёв, А. В. Получение муллитоциркониевой керамики плазменно-искровым способом / *А. В. Хмелёв* // Новые огнеупоры. — 2014. — № 4. — С. 33–38.

13. **Хмелёв, А. В.** Получение муллит-ТіС-с-ВNс-ZrO₂-материалов методом плазменно-искрового спекания и их свойства / А. В. Хмелёв // Новые огнеупоры. — 2019. — № 2. — С. 23-39.

> Получено 17.04.19 © А. В. Хмелёв, 2019 г.

НАУЧНО-ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

62nd International Colloqium on Refractories 2019

62-й Международный коллоквиум по огнеупорам 2019

25–26 сентября 2019 г.

г. Аахен, Германия

