Д. т. н. А. Л. Юрков (🖂), к. х. н. А. П. Малахо, д. х. н. В. В. Авдеев

ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова», Москва, Россия

УДК 666.762.85.043.1.017:620.193]:621.357.13 КОРРОЗИЯ И ОКИСЛЕНИЕ КАРБИДА КРЕМНИЯ НА НИТРИДНОЙ СВЯЗКЕ В БОРТОВОЙ ФУТЕРОВКЕ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ

Основной вопрос для понимания коррозии бортовой футеровки из карбида кремния на нитридкремниевой связке — предшествует ли коррозия материала Si₃N₄-SiC газами (и, в частности, окисление) коррозии расплавом электролита или коррозия расплавом электролита играет собственную роль в деградации материала при службе. Более вероятно, что реакции SiC и Si₃N₄ с расплавом криолита проходят через стадию предокисления. Расчеты показывают, что большинство возможных реакций SiC и Si₃N₄ с кислородом и моно- и диоксидом углерода имеют положительный объемный эффект, что уменьшает пористость материала, но может вызвать в нем появление трещин. Образующийся при этом оксид кремния растворяется в расплаве электролита, а также может реагировать с компонентами электролита в газовой фазе.

Ключевые слова: карбид кремния, нитридкремниевая связка, коррозия бортовой футеровки, алюминиевый электролизер.

Коррозия — очень сложное явление, при анализе которого следует принимать во внимание различные процессы и механизмы деградации материала. В общем коррозию SiC в алюминиевых электролизерах можно разделить на коррозию газами и коррозию расплавами [1, 2]. Бортовая футеровка электролизера из SiC на связке из Si₃N₄ (рис. 1) должна выдерживать:

 - химическое взаимодействие с расплавом электролита (состоящего в основном из криолита (рис. 2));

окисление верхней части бортовой футеровки (выше расплава) в сложной окислительновосстановительной среде, обогащенной моно- и диоксидом углерода, в присутствии паров фтористых солей и соединений натрия;

 – эрозию циркулирующим металлом и электролитом с частицами глинозема.

Вероятно, основным в понимании процесса коррозии SiC-футеровки на нитридкремниевой связке является вопрос — предшествует ли коррозия газами (и окисление, в частности) процессу коррозии расплавами или коррозия расплавами играет собственную роль в деградации материала при службе.

Обычно карбидкремниевая бортовая футеровка в электролизерах покрыта слоем гарни-

сажа — замерзшего электролита с частицами глинозема (см. рис. 1, б), но при пуске электролизера или при перегреве бортовая футеровка находится в прямом контакте с расплавленным

Рис. 1. Конструкция бортовой футеровки электролизера: *а* — ванна без гарнисажа (1 — участок бортовой футеровки выше расплава электролита; 2 — граница между расплавами электролита и алюминия); *б* — ванна с нормальным гарнисажем

электролитом (см. рис. 1, a). Гарнисаж проницаем для газов. Взаимодействие SiC и Si₃N₄ с кислородом, моно- и диоксидом углерода в присутствии летучих соединений натрия и фтористых солей начинается с начала работы электролизера и продолжается в течение всего срока его службы. Наиболее интенсивная коррозия SiC и Si₃N₄ происходит на границе раздела электролит

Рис. 3. Схема лабораторного электролизера для испытаний образцов SiC на связке из Si₃N₄ в институте SINTEF [6, 7] (*a*) и стержни из материала Si₃N₄–SiC после испытаний на коррозионную стойкость [13, 14] (б)

– алюминий (см. рис. 1). Качество материала футеровки весьма критично для срока ее службы. В алюминиевой промышленности в качестве лабораторного испытания принят стержневой тест на коррозионную стойкость [6–12]. Цель настоящего исследования — обобщение результатов по коррозионной и окислительной стойкости SiC на связке из Si₃N₄, полученных А. Л. Юрковым [13–16] ранее, а также результатов лабораторных и промышленных испытаний [6–12, 17–24].

Материалы для исследования были изготовлены из коммерчески доступного порошка α-SiC (SiC > 98 %, Fe < 0,3 %, C < 0,4 %) и порошка кремния (Si > 98 %, Fe <0,5 %, Al <0,4 %, Ca <0,4 %). Пористость и плотность материалов определяли по ISO 5017:2013-01, пределы прочности при сжатии и изгибе — по ISO 10059-2:2003 и ISO 5014-97. Пористость материалов составляла 16-17 %, предел прочности при сжатии 150-160 МПа, при изгибе 30-35 МПа. Структуру образцов после лабораторных и промышленных испытаний анализировали на микроскопе X-max MIRA3 (Tescan) с энергодисперсионным микроанализатором Oxford Instruments. Состав определяли методами химического титрования и рентгенофазовым анализом на приборе Thermo ARLX-TRA (Си K_{α} -излучение, $\lambda = 1,5418$ Å, скорость съемки 0,2 град/мин). Лабораторные тесты на коррозионную стойкость [13-16] проведены в институте SINTEF, Норвегия (рис. 3, *a*), коррозионную стойкость определяли по изменению объема образцов в виде стержней (рис. 3, б).

Средний срок службы электролизеров составляет 60-72 мес, при службе в бортовой футеровке из SiC на связке из Si₃N₄ происходят изменения на микро- и макроуровне (табл. 1, рис. 4). Бортовая футеровка может частично растворяться на границе электролит – воздух (рис. 4, *a*), может становиться более тонкой (рис. 4, *б*) и растрескиваться (рис. 4, *в*). Уменьшение толщины и растрескивание футеровки происходят на участках выше уровня электролита.

В серии статей группы авторов [17–19], положивших начало изучению физико-химических превращений в SiC-футеровке на связке из Si₃N₄ при службе в алюминиевых электролизерах, описана обобщенная картина роста содержания SiO₂ в материале Si₃N₄–SiC в течение времени; зависимость приводится без деталей и концентраций. В соответствии с этими данными после относительно короткого периода времени кон-

Таблица 1. Изменение пористости и плотности* бортовой футеровки Si₃N₄–SiC при службе [13]

№ п/п	Кажущаяся плотность, г/см ³	Открытая пористость, %		
4	0.00/0 ==	45.040.4		
1	2,68/2,75	15,8/10,4		
2	2,68/2,77	15,6/7,5		
* В числителе — исходная, в знаменателе — после 180 сут				
службы.		-		

Рис. 4. Бортовая футеровка Si₃N₄-SiC после службы в электролизере: *a* — после службы 60 мес; *б* — уменьшение толщины в верхней части бортовой футеровки после службы 45 мес; *в* — растрескивание и скалывание в верхней части футеровки после службы 24 мес

центрация SiO₂ в материале достигает 7–8 %, после чего становится примерно постоянной (рис. 5) в течение некоторого времени, и далее рост содержания SiO₂ тормозится. По данным лабораторных испытаний (см. рис. 3, *a*), стержни из Si₃N₄-SiC теряют часть своего объема выше уровня электролита, на границе раздела воздух – электролит и ниже уровня электролита. В соответствии с данными [13–16] потери объема могут составлять от 2 до 20 %.

Сведения по содержанию SiO₂ в карбидкремниевой бортовой футеровке весьма ограниченны. На рис. 5 помимо обобщенной зависимости концентрации SiO₂ от времени [17–19] указаны данные А. В. Прошкина [20], а также другие данные о концентрации SiO₂ в реальных условиях [17–19]. Содержание SiO₂ может колебаться от 1,65 до 7–11 % (табл. 2). В материале Si₃N₄-SiC крупные зерна SiC окружены мелкими зернами Si₃N₄ (рис. 6). В огнеупорах до службы кристаллы имеют четко выраженные грани, что особенно четко видно на крупных зернах α-SiC (см. рис. 6, б). Считается, что α-Si₃N₄ кристаллизуется преимущественно в форме нитевидных кристаллов (см. рис. 6, а), кристаллы β-Si₃N₄ более изометричны (см. рис. 6, б). При окислении (см. рис. 6, в) кристаллы SiO₂ становятся более округлыми, кристаллы SiC теряют четкость граней, и оксид кремния появляется на закругленных поверхностях кристаллов SiC (см. рис. 6, г). При взаимодействии с криолитом кристаллы Si₃N₄ растворяются; остаются заметными округлые зерна кристаллов SiC (см. рис. 6, ∂).

Рис. 5. Зависимость содержания SiO₂ в бортовой футеровке Si₃N₄-SiC по данным [17-19] и экспериментальным данным: 1 — по данным А. В. Прошкина [20], гарнисаж слабый, бортовая футеровка перегрета; 2 гарнисаж слабый, срок службы 39 мес, верхняя часть футеровки; 3 — гарнисаж слабый, срок службы 39 мес, нижняя часть футеровки; 4 — гарнисаж хороший, срок службы 36 мес, нижняя часть футеровки; 5 — гарнисаж хороший, срок службы 36 мес, верхняя часть футеровки

В бортовой футеровке Si_3N_4 -SiC электролизера выше уровня электролита SiC и Si_3N_4 взаимодействуют с газами по реакциям (1)-(8):

- SiC (TB) + 2CO (Fa3) = 3C (TB) + SiO₂ (TB), (2)
- SiC(TB) + CO(TA3) = 2C(TB) + SiO(TA3), (3)
- SiC (TB) + CO₂ (ra3) = 2C (TB) + SiO₂ (TB), (4)
- SiC (TB) + $3CO_2$ (ras) = SiO₂ (TB) + 4CO (ras), (5)

$$Si_3N_4$$
 (TB) + $7O_2$ (ras) = $3SiO_2$ (TB) + $4NO_2$ (ras), (6)

Таблица 2. Химический состав бортовой футеровки Si₃N₄–SiC после службы в реальных условиях

Условия службы	Содержание, мас. %			Срок службы,	Часть бортовой		
(см. рис. 5)	SiC	Si_3N_4	SiO_2	Si	оксиды, включая Na ₂ SiO ₃	мес	футеровки*
1 [20]	50,7	16,62	11,10	-	21,58	46	-
2	73,1	15,40	7,30	-	2,20	39	Верхняя
3	68,1	18,20	7,20	_	6,50	39	Нижняя
4	73,7	23,30	1,65	0,34	0,98	36	Нижняя
5	71,0	25,30	2,30	0,30	1,10	36	Верхняя
* Верхняя часть бортовой футеровки — над слоем электролита, нижняя — ниже границы раздела электролит – воздух.							

$$\begin{split} Si_{3}N_{4} (\text{TB}) + 6CO (\text{ra3}) &= 3SiO_{2} (\text{TB}) + 6C (\text{TB}) + 2N_{2} (\text{ra3}), \quad (7) \\ Si_{3}N_{4} (\text{TB}) + 6CO_{2} (\text{ra3}) &= 3SiO_{2} (\text{TB}) + 6CO (\text{ra3}) + 2N_{2} (\text{ra3}). (8) \end{split}$$

SiC превращается в SiO₂, Si₃N₄ тоже преврашается в SiO₂ (хоть возможно появление промежуточного продукта — оксинитрида кремния [7]). Окисление может происходить при взаимодействии с кислородом, а также с монооксидом углерода и диоксидом углерода. Большая часть реакций окисления (1), (2), (4)-(6) и (8) проходит с положительным объемным эффектом. Продукты реакции занимают больше места, чем исходные соединения. Объемный эффект реакций (1) и (5) составляет $\Delta V/V = +112$ %, реакций (6) и (8) $\Delta V/V = 80$ %, реакции (2) может варьироваться от +308 до +344 %. Неопределенность в расчете точного значения объемного эффекта возникает из-за недостатка знаний, в какой модификации появляются в процессе реакции оксид кремния (кварцевое стекло, кварц, кристобалит, тридимит) и углерод (графит, кокс). Объемный эффект реакции (4) может колебаться от +103 до +124 %. Объемный эффект реакций (3) и (7) отрицательный (-15 и -27,9 %). Положительный объемный эффект реакций может играть важную роль для увеличения срока службы, поскольку появляющийся SiO₂ может заполнять поры и уменьшать пористость материала (см. табл. 1). Уменьшение пористости препятствует проникновению газов и расплава внутрь огнеупора. Однако положительный объемный эффект означает, что появляющийся в порах SiO₂ может вызывать

механические напряжения и, соответственно, образование трещин и сколов (см. рис. 4, в) [13].

Обычно температура 800-900 °С (выше этого интервала температура бортовой футеровки не поднимается) не считается критической для окисления SiC и Si₃N₄. Однако в присутствии фтористых солей и соединений натрия может изменяться механизм окисления футеровки от пассивного окисления с образованием защитной пленки SiO₂ на поверхности зерен к активному окислению, когда газообразные продукты реакции удаляются с поверхности футеровки. Окисление — не единственный путь к деградации бортовой футеровки из SiC на связке из Si₃N₄. Согласно расчетам [24], прямые реакции SiC и Si₃N₄ с криолитом термодинамически мало вероятны. Однако возможны прямые реакции SiC и Si₃N₄ с соединениями фтора и натрия в газовой фазе в присутствии кислорода [20].

Газообразный NaAlF₄ (газ) появляется по реакции

$$Na_{3}AlF_{6} = 2NaF + NaAlF_{4} (ra3)$$
(9)

и взаимодействует с Si₃N₄ и SiC в присутствии кислорода:

 $2SiC (TB) + NaAlF_4 (ra3) + 2O_2 (ra3) = SiF_4 (ra3) + NaAlSiO_4 (x) + 4C (TB),$ (10)

 $2SiC (TB) + NaAlF_4 (ra3) + 2CO_2 (ra3) = SiF_4 (ra3) + NaAlSiO_4 (x) + 4C (TB),$ (11)

 $2Si_3N_4$ (тв) + $3NaAlF_4$ (газ) + $6CO_2$ (газ) =

= $3SiF_4$ (газ) + $3NaAlSiO_4$ (ж) + 6С (тв) + $4N_2$ (газ). (12)

46

Газообразный HF также может взаимодействовать с Si_3N_4 [24, 25] по реакции

 Si_3N_4 (TB) + 16HF (ra3) = 2(NH_4)_2SiF_6 + SiF_4 (ra3). (13)

Образующийся как по реакциям (1)-(8), так и по другим реакциям SiO₂ тоже может взаимодействовать с газообразными соединениями фтора и натрия:

 $4SiO_2 (TB) + 2NaAlF_4 (ra3) = 2SiF_4 (ra3) +$ $+ 2NaAlSiO_4 (x),$ (14)

 $3SiO_2$ (тв) + $4NaAlF_4$ (газ) = SiF_4 (газ) +

+ $2Na_2SiO_3$ (ж) + $4AlF_3$ (ж), (15)

 $3SiO_2$ (TB) + 4NaF (ra3) = SiF_4 (ra3) + $2Na_2SiO_3$ (xx), (16)

$$SiO_2$$
 (TB) + 4HF (ra3) = 2H₂O (ra3) + SiF₄ (ra3). (17)

Реакции (10)-(17) дают, по крайней мере, один газообразный продукт, который испаряется, и плиты из Si₃N₄-SiC в верхней части бортовой футеровки электролизера становятся тоньше. Уменьшение толщины плиты (рис. 4, б) может составлять 20-25 мм. По данным А. В. Прошкина [20], изменение толщины верхней части бортовой футеровки составляет примерно такие же величины. Схожая картина наблюдается и при лабораторных испытаниях на коррозионную стойкость (см. рис. 3, б). Стержни Si₃N₄-SiC теряют объем в основном в районе границы раздела электролит – воздух и выше, хотя некоторое уменьшение объема наблюдается и на участках, погруженных в электролит. Можно предположить, что этот процесс происходит вследствие реакций с участием газовой фазы.

При пуске электролизера карбидкремниевая бортовая футеровка находится в прямом контакте с расплавом электролита. Гарнисаж на бортовой футеровке образуется в течение примерно 1,0-1,5 мес. Обычно заметных следов взаимодействия электролита и последствий взаимодействия электролита, SiC и Si₃N₄ нет. Изобарно-изотермический потенциал реакций SiC и Si₃N₄ при 900 °C положителен ($\Delta G = 500$ кДж/моль) [24], т. е. термодинамически реакций быть не должно. Однако, по данным лабораторного теста SINTEF [24], при прямом контакте криолита, SiC и Si₃N₄ уменьшение объема стержней составляет от 2 до 20 % [6, 7, 23, 24]; при этом, по крайней мере, часть материала, в котором произошло растворение, находится в расплаве электролита (см. рис. 3, б). Можно предположить, что SiC и Si₃N₄ не могут взаимодействовать с криолитом, но могут окисляться анодными газами СО и СО₂, присутствующими

Библиографический список

1. **Sørlie**, **M**. Cathodes in aluminium electrolysis ; 3rd ed. / *M*. Sørlie, *H*. Øye. — Aluminium-Verlag, 2010. — 662 p.

2. *Yurkov, A.* Refractories for aluminium: electrolysis and the cast house / *A. Yurkov.* — Springer International Publishing AG, 2015. — 254 p.

в расплаве криолита при электролизе по реакциям (2), (4)–(8). Образующийся SiO₂ взаимодействует с компонентами криолита в жидкой фазе по реакциям [1, 2]:

$9SiO_2$ (тв) + $4Na_3AlF_6$ (ж) = $6Na_2SiO_3$ (ж) +			
+ 3SiF ₄ (газ) + 4AlF ₃ (ж),	(18)		
$3SiO_{2}(TB) + 4NaF(x) = SiF_{4}(ras) + 2Na_{2}SiO_{3}(x).$	(19)		

Таким образом, наиболее вероятным механизмом деградации SiC на связке из Si_3N_4 является предокисление с появлением SiO_2 и последующим взаимодействием SiO_2 в газовой или жидкой фазе с последующим испарением или растворением.

Имеются сведения [21–23], что Si₃N₄ менее стоек к коррозии расплавом электролита, чем SiC. Существуют также предположения [21, 22], что β-модификация Si₃N₄ менее стойка к коррозии криолитом, чем α-модификация. Эти предположения сделаны на основании анализа материала Si₃N₄-SiC после контакта с расплавом криолита. С другой стороны, в соответствии с исследованиями авторов публикации [24], α -Si₃N₄ менее подвержен коррозии, чем β -Si₃N₄. Вероятно, в данном случае играет роль кинетика реакций. Зерна SiC в материале Si₃N₄-SiC имеют размеры до 2-3 мм, в то время как размеры зерен Si₃N₄ составляют 10 мкм и менее (см. рис. 6). Удельная поверхность мелких зерен Si₃N₄ существенно выше, чем у зерен SiC. Мелкие зерна Si₃N₄ растворяются, а крупные зерна SiC из-за коррозии становятся более округлыми. Из анализа структуры не удалось оценить разницу в сопротивлении коррозии расплавом криолита α- и β-Si₃N₄ (см. рис. 6, *д*). Разница в коррозионной стойкости крупных зерен SiC по сравнению с мелкими зернами Si₃N₄ очевидна.

ЗАКЛЮЧЕНИЕ

1. Коррозия SiC-футеровки на связке из Si₃N₄ в алюминиевых электролизерах может происходить из-за реакций с участием газовой и жидкой фазы. Большинство реакций идут с положительным объемным эффектом.

2. Большая коррозионная стойкость SiC по отношению к расплаву криолита, чем у Si_3N_4 , связана с тем, что зерна SiC в материале Si_3N_4 -SiC намного крупнее и имеют меньшую удельную поверхность.

3. Более вероятно, что реакции SiC и Si_3N_4 с криолитом идут через стадию предокисления.

^{3.} **Thonstad**, **J**. Aluminium electrolysis. Fundamentals of the hall-heroult process / J. Thonstad, P. Fellner, G. Haarberg [et al.] — Aluminium-Verlag, 2001. — 359 p.

^{4.} *Grjothheim, K.* Aluminium smelter technology; 2nd ed. / *K. Grjothheim, B. W. Welch.* — Düsseldorf : Aluminium-Verlag, 1988. — 328 p.

5. **Борисоглебский, Ю. В.** Металлургия алюминия / Ю. В. Борисоглебский, Г. В. Галевский, Н. М. Кулагин. — Новосибирск : Наука, 1999. — 437 с.

6. *Skybakmoen, E.* Chemical resistance of sidelining materials based on SiC and carbon in cryolitic melts — a laboratory study / *E. Skybakmoen, H. Gudbransen, L. T. Stoen* // Light Metals. — 1999. — Vol. 128. — P. 215–222.

7. *Skybakmoen, E.* Quality evaluation in nitride bonded silicon carbide sidelining materials / *E. Skybakmoen, L. Stoen, J. H. Kvello, O. Darrel //* Light Metals. — 2005. — Vol. 134. — P. 773–778.

8. Laucournet, R. Chemical resistance of sidelining refractory based on Si_3N_4 bonded SiC / R. Laucournet, V. Laurent, D. Lombard // Light Metals. — 2008. — Vol. 137. — P. 961–966.

9. *Zhao, J.* Test method for resistance of SiC material to cryolite / *J. Zhao, Z. Zhang, W. Wang, G. Liu //* Light Metals. — 2006. — Vol. 135. — P. 663–666.

10. *Gao, B. L.* Corrosion tests and electrical resistivity measurement of $SiC-Si_3N_4$ refractory materials / *B. L. Gao, Z. W. Wang, Z. X. Qiu //* Light Metals. — 2004. — Vol. 133. — P. 419–424.

11. *Cao, C.* A new test method for evaluating Si_3N_4 -SiC bricks corrosion resistance to aluminium electrolyte and oxygen / *C. Cao, B. Gao, Z. Wang, X. Hu, Z. Qui //* Light Metals. -2006. - Vol. 135. - P. 659–661.

12. **Прошкин, А. В.** Анализ состояния и динамики износа бортовой футеровки в катодах алюминиевых электролизеров / А. В. Прошкин, В. В. Пингин, П. П. Поляков [и др.] // Журнал Сибирского федерального университета. Техника и технологии. — 2013. — Т. 2, № 6. — С. 276-284.

13. **Yurkov, A.** Nitride bonded silicon carbide refractories: structure variations and corrosion resistance / *A. Yurkov, O. Danilova, A. Dovgal //* 13th Biennal worldwide congress on refractories UNITECR 2013, the Unified international conference on refractories, Sept. 10–13, 2013, Victoria, B. C., Canada. — P. 991–996.

14. **Yurkov, A.** N–SiC side lining — variations of materials structure / A. Yurkov, O. Danilova, A. Dovgal // Light Metals. — 2014, TMS (Minerals, Metals and Materials Society). — Vol. 143. — P. 1245–1249.

15. **Yurkov**, **A**. SiC side lining of reduction cells — aspects of physical chemistry in processing and degradation / A. Yurkov, O. Danilova, A. Dovgal // Proceedings of

11th Australasian Aluminium Smelting Technology Conference, Dubai, UAE, 6–11 December 2014.

16. Yurkov, A. Oxidation resistance and corrosion resistance of silicon carbide side lining / A. Yurkov // 33rd International Conference of ICSOBA «Global and Gulf Region Developments in Bauxite, Alumina and Aluminium Production», Travaux ICSOBA. — 2015. — Vol. 40, \mathbb{N} 44. — AL 19.

17. Schoenhahl, J. Optimization of Si_3N_4 bonded SiC refractories for aluminium reduction cells /J. Schoenhahl, E. Jorge, O. Marguin, S. Kubiak, P. Temme // Light Metals. -2001. – Vol. 130. – P. 251–255.

18. Jorge, E. Si_3N_4 bonded SiC refractories for higher aluminium cell performance / E. Jorge, O. Marguin // Aluminium Times. — September 2004. — P. 47–50.

19. *Jorge, E.* The usage of N–SiC refractories for the increasing of productivity of aluminium reduction cells / *E. Jorge, O. Marguin P. Temme //* Aluminium of Siberia. — 2003. — Vol. 9. — P. 203–208.

20. *Etzion, R.* Factors affecting corrosion resistance of silicon nitride bonded silicon carbide refractory blocks / *R. Etzion, J. B. Metson //* J. Am. Ceram. Soc. — 2012. — Vol. 95. — P. 410–415.

21. *Metson, J.* Materials science constraints on the development of aluminium reduction cells. Advanced materials development and performance (AMDP2011) / *J. Metson, G. McIntoch, R. Etzion //* Int. J. of Modern physics: Conference Series. — 2012. — Vol. 6. — P. 25–30.

22. **Paulek**, **R**. SiC in electrolysis pots: an update / R. Paulek // Light Metals. — 2006. — Vol. 135. — P. 655–658.

23. **Wang, Zh.** Spent Si₃N₄ bonded sidelining materials in aluminium electrolysis cells / *Zh. Wang, E. Skybakmoen, T. Grande //* Light Metals. — 2009. — Vol. 138. — P. 353–358.

24. **Skybakmoen, E.** The influence of microstructure of Si_3N_4 -SiC side-lining materials on chemical/oxidation resistance behavior tasted in laboratory scale / *E. Skybakmoen, T. Grande, Zh. Wang //* Proceedings of 11th Australasian Aluminium Smelting Technology Conference, Dubai, UAE, 6–11 December 2014.

Получено 18.09.18 © А. Л. Юрков, А. П. Малахо, В. В. Авдеев, 2019 г.

НАУЧНО-ТЕХНИЧЕСКАЯ	ИНФОРМАЦИЯ
--------------------	------------

	UzMetalMashExpo — 11-я Международная металлургическая выставка			
•	2729 марта 2019 г.	г. Ташкент, Республика	Узбекистан	
UzMetalMashExpo	 Тематика Оборудование Металлургия и металлообработка черная и цветная металлургия порошковая металлургия сырье для металлургической пр оборудование, машины и технол ковка, штамповка и литейное пр сбор и переработка лома черны обработка листового металла и Сварочные материалы, оборудова Продукты с высокой конверсией 	омышленности югии для металлургической промышле юизводство х и цветных металлов длинномерных изделий ние и технологии	енности	
	 Транспорт и логистика, IT, лизинг, 	страхование	www.ieg.uz	