

К. т. н. **В. В. Козлов¹**(^{||}), д. т. н. **А. П. Шевчик**¹, д. т. н. **С. А. Суворов**¹, к. т. н. **Н. В. Арбузова**¹, к. т. н. **Д. В. Кузнецов**²

¹ ФГБОУ ВО «Санкт-Петербургский государственный технологический институт (технический университет)», Санкт-Петербург, Россия

² ФГАОУ ВО «Национальный исследовательский технологический университет «МИСиС», Москва, Россия

УДК 666.762.32.017:620.197

МОДЕЛИРОВАНИЕ ФАЗОВОГО СОСТАВА ОГНЕУПОРНЫХ И ШЛАКОВЫХ СИСТЕМ, ОПТИМИЗАЦИЯ ШЛАКОВОГО РЕЖИМА И СТАБИЛИЗАЦИЯ ШЛАКОВ ВНЕПЕЧНОЙ ОБРАБОТКИ СТАЛИ

Предложена методика моделирования фазообразования в рамках многокомпонентной оксидной системы CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃, которая может быть применена для прогнозирования равновесного фазового состава огнеупорных систем и систем типа шлак – огнеупор для модификации химического состава металлургических шлаков, повышения ресурса футеровки металлургических агрегатов, а также для целенаправленного придания им свойств минеральных вяжущих веществ.

Ключевые слова: ковш, печь-ковш, шлаковая коррозия, внепечная обработка стали.

ВВЕДЕНИЕ

лаковая коррозия — одна из основных причин вывода из эксплуатации агрегатов внепечной обработки стали для проведения холодного ремонта футеровки, так как зона шлакового пояса подвергается максимальному химическому воздействию агрессивных расплавов. В настоящее время разработаны различные варианты футерования сталеразливочных ковшей формованными и неформованными огнеупорными материалами (в том числе комбинированные футеровки), но рабочий слой шлакового пояса чаще всего изготавливают из высококачественного периклазоуглеродистого огнеупора на основе плавленого периклаза высокой степени чистоты и низкозольного крупнокристаллического графита.

Высококачественные периклазоуглеродистые огнеупоры с содержанием углерода от 6 до 12 мас. % обладают максимальной коррозионной стойкостью по отношению к рафинировочным

> 🖂 B. B. Козлов E-mail: chemic@yandex.ru

шлакам внепечной обработки стали и обеспечивают наиболее равномерный износ зоны шлакового пояса и зоны металла футеровки.

При кристаллизации рафинировочных шлаков, проникающих в поры и щели футеровки, выделяется фаза двухкальциевого силиката (C₂S) [1], которая обладает развитым полиморфизмом, и существует в зависимости от условий в виде α-, β- и у-форм. Формирование фазы C₂S может представлять собой серьезную проблему и приводить к ускоренному износу огнеупоров шлакового пояса. Двухкальциевый силикат кристаллизуется при охлаждении шлакового расплава, проникшего в щели, трещины и другие дефекты футеровки, и вызывает сколы, растрескивание и отслаивание огнеупоров, так как при температуре ниже 820 °С происходит полиморфное превращение C₂S, сопровождающееся повышением объема на 12 %. Таким образом, неритмичная работа металлургического агрегата, значительное охлаждение между плавками приводит к существенному снижению ресурса огнеупорной футеровки.

Полиморфные превращения C₂S вызывают эффект «силикатного распада» шлака при его охлаждении, который проявляется как дефрагментация, рассыпание и пылеобразование затвердевшего шлака [2]. Образование шлаковой пыли негативно сказывается на экологической обстановке в сталеплавильном цеху и в районах, прилегающих к местам складирования шлаковых отходов. Существуют различные методы стабилизации рафинировочных шлаков [1]. Одним из них является модификация химического состава с целью смещения его в область, где минимизируется кристаллизация двухкальциевого силиката.

Ресурс футеровки сталеплавильных агрегатов в значительной степени определяется агрессивностью шлаковых расплавов, которая по отношению к футеровке определяется химическим составом и температурой шлака. Агрессивность максимальна, если шлаковый расплав находится в области первичной кристаллизации какого-либо легкоплавкого соединения. Для ее снижения по отношению к периклазоуглеродистому огнеупору его химический состав модифицируют в область первичной кристаллизации MgO, насыщая расплав оксидом магния, используя различные магнезиальные шлакообразующие добавки [3], дозировка применения которых основывается на накопленном производственном опыте.

Динамика перехода огнеупорной фазы в шлаковый расплав в общем виде *q* описывается следующим уравнением:

$$q = \frac{D}{d} (C_{\infty} - C_{\rm MgO}), \tag{1}$$

где C_{∞} — концентрация, соответствующая насыщению шлакового расплава оксидом магния; $C_{\rm MgO}$ — концентрация MgO в шлаковом расплаве; $\Delta_{\rm MgO}$ — степень ненасыщенности шлака по MgO (движущая сила процесса шлаковой коррозии), $\Delta_{\rm MgO} = C_{\infty} - C_{\rm MgO}; d$ — толщина диффузионного слоя на поверхности раздела шлак – огнеупор; D — эффективный коэффициент диффузии огнеупорной фазы (MgO) в шлаковый расплав.

На рис. 1 схематично показан разрез поверхности ликвидуса для шлакового расплава, находящегося в области первичной кристаллизации MgO. Движущая сила процесса шлаковой коррозии Δ_{MgO} определяется степенью перегрева расплава Δ_T (разница между температурой ликвидуса и температурой шлака) и концентрацией MgO.

Повышение концентрации MgO в расплаве приводит к снижению движущей силы шлаковой коррозии и уменьшению степени перегрева расплава. Но следует учитывать, что при переходе содержания MgO выше предела растворимости при температуре ведения металлургического процесса существует риск формирования гетерогенного шлака с высокой вязкостью и недостаточной рафинирующей способностью. В качестве критерия оптимизации при модификации химического состава шлака предлагается использовать Δ_T — степень его перегрева.

Рис. 1. Поверхность ликвидуса и движущая сила шлаковой коррозии

Актуальной является задача разработки теоретических основ и математического аппарата для целенаправленной модификации химического состава шлаков (оптимизации шлакового режима) агрегатов внепечной обработки стали для снижения интенсивности шлаковой коррозии огнеупоров, минимизации эффекта «силикатного распада» шлаков с целью повышения ресурса футеровки, снижения расхода огнеупоров на 1 т стали и улучшения экологической обстановки в сталеплавильном цехе.

Также в футеровке сталеразливочных и промежуточных ковшей, продувочных фурм, турбостопов, желобов доменных печей и других металлургических агрегатов широко применяют неформованные огнеупорные материалы и огнеупорные бетоны. Формирование фазового состава и структуры монолитного огнеупорного материала происходит, как правило, по месту применения в конструкциях при температуре проведения металлургических процессов. Связующая система или матричная часть для многих типов современных низкоцементных огнеупорных бетонов содержит в разных соотношениях высокоглиноземистый цемент, микрокремнезем, тонкодисперсный кальцинированный глинозем (реактивный глинозем) и различные функциональные добавки. Существенное влияние на степень спекания, огнеупорность, температуру начала деформации под нагрузкой и шлакоустойчивость монолитного огнеупорного материала оказывают фазы, образующиеся при взаимодействии между тонкодисперсными и примесными компонентами бетона.

МОДЕЛИРОВАНИЕ РАВНОВЕСНОГО ФАЗОВОГО СОСТАВА ОГНЕУПОРОВ И ШЛАКОВ В РАМКАХ ХИМИЧЕСКОЙ СИСТЕМЫ CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃

Высокотемпературное фазообразование в огнеупорных системах (в том числе в огнеупорных бетонах с вяжущей системой на основе высокоглиноземистого цемента, микрокремнезема и реактивного глинозема), а также металлургических шлаках и системах шлак – огнеупор во многих случаях с достаточной точностью описывается с помощью шестикомпонентной химической системы CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃. Данная система представляет значительный интерес с точки зрения изучения свойств многих формованных и неформованных огнеупоров и металлургических шлаков.

При равновесной кристаллизации *п*-компонентного расплава выделяется *п* твердых фаз, при этом вся многокомпонентная система в субсолидусном строении делится на некоторое количество политопов — ансамблей из *п* взаимно сосуществующих фаз. Каждая точка произвольно заданного химического состава в рамках п-компонентной системы находится в области одного из существующих политопов или на их границах. Таким образом, существует однозначное соотношение между химическим составом и равновесным субсолидусным фазовым составом для каждого политопа п-компонентной системы, и это соотношение описывается с помощью системы линейных уравнений:

$$\begin{cases} C_1^{(1)} \cdot x^{(1)} + C_1^{(2)} \cdot x^{(2)} + \dots + C_1^{(n)} \cdot x^{(n)} = Y_1; \\ C_2^{(1)} \cdot x^{(1)} + C_2^{(2)} \cdot x^{(2)} + \dots + C_2^{(n)} \cdot x^{(n)} = Y_2; \\ C_n^{(1)} \cdot x^{(1)} + C_n^{(2)} \cdot x^{(2)} + \dots + C_n^{(n)} \cdot x^{(n)} = Y_n, \end{cases}$$
(2)

где C_j^i — содержание *j*-го компонента в *i*-й фазе; x^i — концентрация *i*-й фазы; Y_1 , ..., Y_n — заданный химический состав (в виде оксидов) в рамках *n*-компонентной системы.

Система линейных уравнений (2) решается для каждого политопа *п*-компонентной химической системы, но только для одного политопа все корни *xⁱ, ..., xⁿ* (искомые концентрации сосуществующих фаз) неотрицательны и решение имеет физический смысл. Решение задачи определения равновесного фазового состава на основании заданного химического состава в рамках *п*-компонентной системы заключается в нахождении этого политопа (ансамбля взаимно сосуществующих фаз) и корней системы линейных уравнений (2) для него. Для составления и практического применения системы уравнений (2) необходимо обладать полной и исчерпывающей информацией обо всех ансамблях взаимно сосуществующих фаз (субсолидусном строении) многокомпонентной химической системы. В монографии [4] приведено полное описание субсолидусного строения шестикомпонентной оксидной системы CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃. Данная система содержит 42 фазы (в том числе 14 трехкомпонентных, 22 двухкомпонентных), которые составляют 132 ансамбля взаимно сосуществующих фаз (политопа).

ОЦЕНКА ТЕМПЕРАТУРЫ ЛИКВИДУСА ШЛАКОВЫХ СИСТЕМ

Температуру ликвидуса *Т*_{лик} можно приблизительно определить с помощью формулы Шредера Ле-Шателье, рассматривая шлаковый расплав с точки зрения модели идеального раствора:

$$T_{_{\Pi HK}} = \frac{\Delta H_{_{\Pi \Pi}} \cdot T_{_{\Pi \Pi}}}{(\Delta H - \ln(x) \cdot R \cdot T_{_{\Pi \Pi}})},$$
(3)

где ΔH_{nn} — тепловой эффект плавления твердой фазы, Дж/моль; T_{nn} — температура плавления твердой фазы, К; x — мольная доля фазы; R универсальная газовая постоянная, $R \approx 8,314$ Дж/(моль·К).

После определения равновесного фазового состава шлака на основе заданного химического состава в рамках системы CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃ производится расчет $T_{\pi\mu\kappa}$ для каждой фазы, входящей в состав найденного политопа, при условии, что фаза плавится конгруэнтно. $T_{\pi\mu\kappa}$ принимается как максимальная из рассчитанных для каждой из фаз политопа, а химический состав шлака находится в области первичной кристаллизации фазы с максимальным расчетным значением $T_{\pi\mu\kappa}$.

С более высокой точностью *Т*_{лик} многокомпонентной шлаковой системы может быть определена с помощью выражений:

$$\ln(\alpha_{\phi}) = -\Delta H_{\Pi\Pi} \cdot R^{-1} \cdot \left(\frac{1}{T_{\Pi\Pi\pi}} - \frac{1}{T_{\Pi\Pi}}\right),\tag{4}$$

$$T_{_{\Pi HK}} = \frac{1}{\frac{1}{T_{_{\Pi \Pi}}} - \frac{\ln(\alpha_{\Phi}) \cdot R}{\Delta H_{_{\Pi \Pi}}}},$$
(5)

где α_{ϕ} — активность фазы.

Активность фаз, входящих в состав шлаковой системы, может быть определена с помощью модели полимерного — ионного — шлакового расплава [5].

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ И ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ

Для экспериментального исследования фазового состава матричной части огнеупорного бетона приготовлены образцы на основе высокоглиноземистого цемента, реактивного глинозема, микрокремнезема и тонкомолотой алюмомагниевой шпинели. Химический состав реактивного глинозема приведен в табл. 1. Химический состав высокоглиноземистого цемента марки CEMBOR-73, мас. %: Al₂O₃ не менее 73,0, Fe₂O₃ не более 0,5, SiO₂ не более 0,8, СаО не менее 22,0 [6]. Химический состав микрокремнезема марки Elcem MS-968, мас. %: SiO₂ 96,5, Al₂O₃ 0,7, Fe₂O₃ 0,3, CaO 0,4, MgO 0,5, Na₂O 0,3, K₂O 0,85, C 0,8, SO₃ 0,5 [7]. Химический состав алюмомагниевой шпинели марки AR-78, мас. %: Al₂O₃ 74,0, MgO 22,5, CaO 0,2, SiO₂ 0,1, Na₂O 0,1, Fe₂O₃ 0,2 [8]. Компонентный и химический состав исследуемых образцов приведен в табл. 2 и 3. Перед исследованием методом РФА образцы подвергались двукратному обжигу при 1300 °С.

Фазовый состав образцов *A*, *B* и *C* исследовали методом РФА на установке Rigaku SmartLab 3

6

Показатоли	TV 14-104-215-07	Типичные				
Показатели	19 14-194-215-57	показатели				
Состав, мас. %:						
Al ₂ O ₃ , не менее	99,30	99,60				
Na₂O, не более	0,35	0,19				
Fe ₂ O ₃ , не более	0,13	0,06				
SiO ₂ , не более	0,08	0,02				
Зерновой состав, мкм:						
D_{50}	2,5	1,44				
D_{90}	4,0-7,5	6,71				
$1 \times D_{50} - 50$ % частиц имеют размер менее указанного; $D_{90} - 1$						
90 % частиц имеют размер менее указанного.						

Таблица 1. Состав реактивного глинозема ГРТ [6]

(рис. 2). Расчетный фазовый состав образцов, полученный в результате моделирования фазового равновесия в рамках многокомпонентной системы CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃ на основе предложенных принципов, приведен в табл. 4.

Результаты экспериментального исследования фазового состава образцов А, В и С методом РФА (см. рис. 2) подтверждают данные, полученные в результате моделирования фазового состава на основе предложенных принципов (см. табл. 4). При высокотемпературной обработке (1300 °C) составов матричной части огнеупорного бетона на основе высокоглиноземистого цемента, реактивного глинозема, микрокремнезема и тонкомолотой алюмомагниевой шпинели формируются кристаллические фазы: муллит, анортит, корунд, алюмомагниевая шпинель. При повышении содержания MgO·Al₂O₃ в образце до 33,4 мас. % снижается концентрация в фазовом составе анортита и муллита, повышается концентрация алюмомагниевой шпинели (от

0,6 до 27,3 мас. %) и корунда (от 5,7 до 9,7 мас. %). В фазовом составе образца *A* (рис. 2, *a*) концентрация алюмомагниевой шпинели находится в области ниже порога обнаружения методом РФА.

В табл. 5 и 6 приведен пример моделирования фазового состава, области первичной кристаллизации и температуры ликвидуса некоторых рафинировочных шлаков установки печь-ковш.

Наиболее агрессивными из представленных являются шлаки, состав которых находится в области кристаллизации фазы C₂S. При этом чем ниже температура ликвидуса, тем выше агрессивность расплава, т. е. чем больше разница между температурой шлака в металлургическом процессе и температурой лик-

Таблица 2. Компонентный состав образцов *A*, *B* и *C*, мас. %

Konmonoum	Образец				
KOMIIOHEHI	Α	В	С		
Cembor-73	33,3	26,6	22,2		
Elcem MS-968	33,3	26,6	22,2		
ГРТ	33,4	26,6	22,2		
Шпинель AR-78	0	20,2	33,4		

Таблица 3. Химический состав образцов *А*, *В* и *С*, мас. %

Ототия	Образец				
Оксид	Α	В	С		
Al ₂ O ₃	58,8	61,8	63,8		
Fe ₂ O ₃	0,3	0,2	0,2		
SiO ₂	32,3	25,7	21,5		
CaO	8,1	6,5	5,4		
MgO	0,3	4,7	7,6		

Таблица 4. Расчетнь	ый фазовый	состав	образцов
А, В и С, мас. %*			

Οбразец	CAS ₂	A_3S_2	MA	А	FΔ	
Образоц	(анортит)	(муллит)	(шпинель)	(корунд)	IA	
A	40,3	53,1	0,6	5,7	0,3	
В	32,5	42,4	16,7	8,1	0,3	
С	27,4	35,3	27,3	9,7	0,3	
* C — CaO; M — MgO; A — Al ₂ O ₃ ; S — SiO ₂ ; F — Fe ₂ O ₃ .						

видуса (степень перегрева шлака), тем выше его агрессивность по отношению к огнеупорной футеровке. Предлагается использовать степень перегрева шлака как критерий оптимизации при модификации химического состава шлака.

В табл. 7 и 8 приведен пример моделирования фазового состава ряда рафинировочных шлаков.

Рис. 2. Рентгенограмма образцов *A* (*a*), *B* (*b*), *C* (*b*): 1 — муллит (3Al₂O₃·2SiO₂); 2 — корунд (Al₂O₃); 3 — анортит (CaO·Al₂O₃·2SiO₂); 4 — алюмомагниевая шпинель (MgO·Al₂O₃)

Таблица 5. Химический состав рафинировочных шлаков установки печь-ковш, мас. %

Шлак	CaO	MgO	Al ₂ O ₃	SiO ₂	FeO
1a	48,7	4,6	30,2	15,9	0,6
2a	47,5	6,9	29,5	15,5	0,6
3a	46,0	9,9	28,5	15,0	0,6

Таблица 6. Расчетный фазовый состав рафинировочных шлаков установки печь-ковш и температура ликвидуса

IIImorr		T °C				
шлак	М	C_2S	CA	C12A7	F	I _{ликв} , С
1a	4,6	45,6*1	37,4	11,8	0,6	1579
2a	6,9	$44,5^{*1}$	36,5	11,6	0,6	1555
3a	9,9*	43,1	35,3	11,2	0,6	1649

*1 Фаза, в области первичной кристаллизации которой находится химический состав шлака.
*2 F — FeO.

Таблица 7. Химический состав рафинировочных шлаков, мас. %

Шлак	CaO	MgO	Al_2O_3	SiO ₂	FeO
1b	55,3	10,0	22,4	14,9	0,4
2b	50,8	9,7	24,7	14,5	0,4
3b	47,8	9,2	29,1	13,6	0,4
4b	46,0	8,8	31,7	13,1	0,3
5b	44,5	8,5	33,9	12,7	0,3

Таблица 8. Расчетный фазовый состав рафинировочных шлаков и температура ликвидуса

IIImow	Содержание, мас. %						T °C
шлак	М	C_2S	C ₃ A	CA	C ₁₂ A ₇	FeO	I ликв, С
1b	10,0*	42,8	12,6	0	34,2	0,4	1641
2b	9,7*	41,5	1,7	0	46,7	0,4	1635
3b	9,2*	39,0	0	20,1	31,4	0,4	1621
4b	8,8*	37,6	0	32,8	20,4	0,3	1612
5b	8,5*	36,4	0	44,0	10,8	0,3	1605
* Фаза,	, в обла	асти пеј	рвичноі	і крист	аллизаі	ции кот	орой на-
ходитс	я химич	еский о	состав і	илака.			

Показано, что повышение концентрации Al₂O₃ (введение в шлак исходного состава глиноземсодержащих добавок) приводит к снижению

Библиографический список

1. Шешуков, О. Ю. Стабилизация рафинировочных шлаков путем корректировки их фазового состава и придания им свойств минеральных вяжущих веществ / О. Ю. Шешуков, И. В. Некрасов, М. А. Михеенков [и др.] // Новые огнеупоры. — 2017. — № 6. — С. 45-52.

Sheshukov, O. Yu. Stabilization of refining slag by adjusting its phase composition and giving it the properties of mineral binders / O. Yu. Sheshukov, I. V. Nekrasov, M. A. Mikheenkov [et al.] // Refractories and Industrial Ceramics. — 2017. — Vol. 58, № 3. — P. 324–330.

2. **Кушнерев, И. В.** Стабилизация шлаков внепечной обработки стали от силикатного распада; тез. докл. на Междунар. конф. огнеупорщиков и металлургов (19–20 апреля 2018 г., Москва) / И. В. Кушнерев, М. Б. Оржех, Б. Б. Либанов [и др.] // Новые огнеупоры. — 2018. — № 4. — С. 44.

3. **Брюгманн, С.** Вклад MgO в корректировку состава шлаков внепечной обработки / *С. Брюгманн* // Новые огнеупоры. — 2011. — № 8. — С. 7–11.

концентрации белита (C₂S) и трехкальциевого алюмината (C₃A), а также к повышению концентрации алюмината кальция (CA). Такие фазы, как алюминат кальция (CA) и майенит (C₁₂A₇), обладают вяжущими свойствами и являются компонентами различных вяжущих систем.

ЗАКЛЮЧЕНИЕ

На кафедре ХТТНиСМ СПбГТИ (ТУ) предложена методика и разработано программное обеспечение для моделирования субсолидусного фазового состава огнеупорных и шлаковых систем в рамках многокомпонентной химической CaO-MgO-Al₂O₃-SiO₂-FeO-Fe₂O₃, a системы также для определения областей первичной кристаллизации, оценки температуры ликвидуса шлаковых расплавов. Данное решение может быть использовано для определения степени насыщения по огнеупорным фазам (MqO), целенаправленной оптимизации и стабилизации металлургических шлаков с целью повышения ресурса огнеупорных футеровок металлургических агрегатов, а также для придания металлургическим шлакам свойств минеральных вяжущих веществ.

* * *

Результаты были получены в рамках выполнения государственного задания Минобрнауки России (номер для публикаций: 10.9644.2017/8.9) и комплексного проекта по созданию высокотехнологичного производства по теме «Разработка и освоение наукоемкой технологии производства хладостойкого и коррозионностойкого проката для изготовления прямошовных газонефтепроводных труб в рамках инфраструктурного развития ТЭК РФ с целью импортозамещения» в рамках Постановления Правительства РФ № 218 от 09.04.10, договор № 02.G25.31.0141).

4. Бережной, А. С. Многокомпонентные системы окислов / А. С. Бережной. — Киев : Наукова думка, 1970. — 544 с.

5. Падерин, С. Н. Теория и расчеты металлургических систем и процессов ; уч. пособие для вузов / С. Н. Падерин, В. В. Филиппов. — М. : МИСиС, 2002. — 334 с.
6. http://aobko.ru/publications/neformovanie%20 materiali.pdf

7. https://www.elkem.com/no/elkem-silicon-materials/ refractories/microsilica/microsilica-grade-968/

8. http://www.vulkantm.com/ru/firestop/alumomagnezial/

Получено 13.08.18 © В. В. Козлов, А. П. Шевчик, С. А. Суворов, Н. В. Арбузова, Д. В. Кузнецов, 2018 г.