М. Амареану, Л. Мелита (🖂)

Технический университет гражданского строительства Бухареста, отдел шоссейных дорог, железных дорог и строительных материалов, г. Бухарест, Румыния

УДК 666.948.4(498)

НЕТРАДИЦИОННЫЕ ГЛИНОЗЕМИСТЫЕ СВЯЗКИ: СВЯЗЬ МЕЖДУ СОСТАВОМ И СВОЙСТВАМИ

Исследуются механизмы синтеза, процессы гидратации некоторых высокоогнеупорных кальцийбарийглиноземистых цементов, обсуждается их поведение в бетонах. Исследование касается комплексных процессов отвердевания связок составов C₂BA₄, CA₂-C₂BA₄ и CA₂-C₂BA₄-ss_{CA-BA} после термообработки при различных температурах в течение 2 ч. Изучены химическая активность соединений и природа полученных гидратов. Изготовлены бетоны из 15 % цемента и 85 % заполнителя из табулярного глинозема. Обнаружено, что изученные цементы при определенном минеральном составе приобретают связующие свойства.

Ключевые слова: высокоогнеупорные глиноземистые цементы, кальцийбарийглиноземистые цементы, механизм синтеза, уровень конверсии гидратации.

настоящее время единственными при-Виеняемыми глиноземистыми цементами, имеющими относительно широкий диапазон составов, являются кальцийалюминатные. Их свойства и применение базируются на кальцийалюминатном составе с соотношением Al_2O_3 / CaO в диапазоне 1 $\leq Al_2O_3$ / CaO < 2,2. Информация о гидратации и отвердевании кальцийалюминатных цементов имеется в публикациях [1-6]. Получение огнеупорных бетонов с низким содержанием цемента, обладающих высокой огнеупорностью по сравнению с другими широко применяемыми бетонами, является очень важной задачей, решение которой — тема настоящего исследования. С учетом того что барийалюминатные цементы обладают более высокой огнеупорностью, чем кальцийалюминатные (температура плавления ВА₆ 1915 °C [7, 8], ВА 1815 °C, в то время как СА₆ 1833 °С [7], СА 1605 °С, СА₂ 1750 °С), оправдана частичная замена СаО на ВаО в высокоглиноземистых огнеупорных цементах с высоким содержанием Al₂O₃ без ухудшения прочности. В тройной системе CaO-BaO-Al₂O₃ известно только тройное соединение С₂ВА₄, имеющееся в кальцийбарийалюминатных цементах [7]. Комплексные изоморфные взаимосвязи показаны на рис. 1 [7, 9].

Из смеси исходных материалов были изготовлены глиноземистые соединения для получения из них огнеупорных цементов системы CaO-BaO-Al₂O₃. Подсистемная группа BA₆-CA₆-CA-BA (B = BaO, C = CaO, A = Al₂O₃) была изучена в соответствии с рис. 1. Компоненты подсистем пред-

ставляют интерес с точки зрения их пирометрических свойств и взаимосвязи этих свойств с прочностью, когда термообработка, применяемая при их синтезе, осуществляется в условиях неравновесия [10]. В этой связи был исследован механизм синтеза кальций- и барийалюминатов систем $CA_2-C_2BA_4$ и $CA_2-C_2BA_4-ss_{CA-BA}$ (ss_{CA-BA} твердые растворы ВА и СА) при различных соотношениях компонентов. Кроме того, были изучены механизмы гидратации и отвердевания [11, 12] для улучшения химического состава и структуры бетонов, изготовленных из этих типов связок, физические и прочностные свойства которых подходят для изготовления высококачественных бетонов. Можно утверждать, что существует связь между способностью синтетических глиноземистых соединений взаимодействовать с водой и их способностью приобретать механическую прочность [13, 14].

Рис. 1. Диаграмма состояния тройной системы CaO-BaO-Al_2O_3 $\,$

УСЛОВИЯ И ХОД ЭКСПЕРИМЕНТА

Были синтезированы цементы составов 40 % C_2BA_4 , 40 % CA_2 , 20 % ss_{CA-BA} и 50 % C_2BA_4 , 30 % CA_2 , 20 % ss_{CA-BA} , соответствующие тройному соединению C_2BA_4 , а также системам $CA_2-C_2BA_4$ и $CA_2-C_2BA_4-ss_{CA-BA}$.

В качестве исходных материалов использовали $BaCO_3$, $CaCO_3$ и γ - Al_2O_3 [15, 16]; все материалы имели аналитическую степень чистоты (analytical purity)*. Смеси были гомогенизированы в изопропиловом спирте, затем профильтрованы, высушены и спрессованы под давлением $4 \cdot 10^4$ H (одноосное прессование). Полученные образцы спекали в электропечи при скорости нагрева 10 °C/мин и времени до достижения пологого участка кривой нагрева 2 ч, а затем быстро охлаждали на воздухе и далее были подвергнуты гидратации (соотношение вода/связка 0,5) в течение 6, 12, 24, 72 и 168 ч. Гидратация была прекращена с помощью ацетона.

Для определения природы полученных цементных составляющих и их химической активности, степени гидратации и природы полученных гидратов использовали рентгеновский дифрактометр XRD 6000 (Shimadzu) с Cu K_{α} -излучением в диапазоне $2\theta = 10 \div 50$ град. С применением внешних стандартов по монофазным соединениям были определены составляющие глиноземистых клинкеров и их фазовый состав. Расчетом количества импульсов дифракционных линий максимальной интенсивности безводных компонентов и их восстановления при гидратации определяли степень гидратации (соответствующие безводные образцы использовали при этом в качестве сравнительных).

Природу гидратов, полученных в течение первых 7 сут гидратации, исследовали в соответствии с изученными цементными составляющими. Были определены также физические и связующие характеристики (механическая прочность, плотность и сроки схватывания) бетонов из 15 % цемента и 85 % заполнителя (табулярный глинозем). Замеры осуществляли в воздухе на образцах-кубах, полученных из этих упрочненных бетонов в течение 3, 7 и 28 сут. Срок схватывания определяли на стандартном по консистенции тесте с помощью иглы Вика.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Механизм образования минеральных составляющих глиноземистых цементов системы BaO-CaO-Al₂O₃

Природа полученных составляющих и их количество в синтезированной связке зависят, во-первых, от состава сырой смеси и условий термообработки [17, 18].

Оксидный и исходный составы а также расчетный минеральный состав (при равновесии) приведены в табл. 1. Кристаллические фазы, обнаруженные с помощью рентгеновской дифракции, показаны на рис. 2, 3. Количества импульсов дифракционных линий максимальной интенсивности цементов из соединений C₂BA₄, CA₂-C₂BA₄ и CA₂-C₂BA₄-ss_{CA-BA} приведены в табл. 2. Из табл. 2 видно, что в цементе из соединения C₂BA₄ начиная с 1200 °C образуются

Таблица 1. Составы синтезированных цементов										
		C								

	Состав, %													
Компонент	оксидный				исходный		минеральный							
	BaO	CaO	Al_2O_3	BaCO ₃	CaCO ₃	Al_2O_3	CA ₂	C_2BA_4	SS _{CA-BA}					
CA ₂	-	21,53	78,47	-	32,90	67,10	100	-	-					
C_2BA_4	22,76	16,16	60,60	24,48	24,85	50,67	_	100	-					
SS _{CA-BA}	10,85	29,05	60,10	11,10	41,18	47,73	-	_	100					
50 % CA ₂ , 50 % C ₂ BA ₄	16,40	18,00	65,60	17,76	27,05	55,18	27,98	72,01	_					

^{*} Видимо, по классификации химических реактивов, принятой в России, это ч. д. а — «чистый для анализа». — Примеч. переводчика.

Рис. 3. Рентгенограмма образца безводного цемента составов 50 % C_2BA_4 , 30 % CA_2 , 20 % ss_{CA-BA} (*a*) и 40 % C_2BA_4 , 40 % CA_2 , 20 % ss_{CA-BA} (*b*): 1 — C_2BA_4 ; 2 — CA_2 ; 3 — ss_{CA-BA} ; 4 — BA; 5 — α - Al_2O_3

ВА и СА. При 1300 °С и выше наблюдается образование СА₂ и С₂ВА₄, количество которых постепенно нарастает по мере повышения температуры, как и количество соединений С₂ВА₄ (ВА, СА, СА₂). Термодинамические (T, P) и кинетические параметры (t) не приводят в ходе синтеза С₂ВА₄ к необратимой реак-

ции. При 1500 °C пик, соответствующий α -Al₂O₃, исчезает.

В цементе из СА₂-С₂ВА₄ после термообработки при 1100-1500 °С (см. табл. 2) в течение 2 ч обнаруживаются: при 1100 °C С₂ВА₄, а также ВА, СА и α-Al₂O₃, при 1300 °C — CA₂. Соответствующий пик интенсифицируется с ростом температуры. То же самое наблюдается с пиком С2ВА4, в то время как интенсивность пика α-Al₂O₃ снижается. Замечено значительное увеличение количества импульсов линий дифракции максимальной интенсивности, соответствующих соединениям СА и ВА при 1300 °С. в то время как при 1500 °С интенсивность пиков снижается. В диапазоне 1300-1500 °С в синтезированной смеси наблюдаются дифракционные линии максимальной интенсивности у обоих алюминатных соединений СА и ВА, что указывает на возможное образование C₂BA₄ в присутствии CA₂.

Из табл. 2 видно, что в обоих составах цемента из системы C₂BA₄-CA₂-ss_{CA-BA} при 1300 °С получаются твердый раствор, два других равновесных соединения — CA₂ и C₂BA₄, а также BA и α-Al₂O₃. Дифракционная линия максимальной интенсивности, соответствующая соединению C₂BA₄, растет по мере повышения температуры до 1500 °С. Видно также, что одновременно с увеличением содержания соединения C₂BA₄ (от 40 до 50 %) при 1500 °C растет количество импульсов по дифракционному пику с максимальной интенсивностью, соответствующему этому соединению. Наблюдается большее содержание в смеси ВА, чем в смеси с 40 % С2ВА4. Наблюдается также снижение пика СА₂ (по мере уменьшения содержания СА2 от 40 до 30 %). Из данных, приведенных в табл. 2, видно, что у составов, расположенных вблизи соединения C₂BA₄, нет равновесия, на что указывают и другие исследователи [19-21].

Гидратация минеральных составляющих синтезированных глиноземистых цементов

Исследовали процессы гидратации и упрочнения глиноземистых соединений синтезированных цементов системы CaO–BaO–Al₂O₃, которые представляют большой интерес с точки зрения их связующих

Компонент, число импульсов Температура Состав прочие обнаруженные компоненты синтеза, °С C_2BA_4 CA_2 SS_{BA-CA} CA CA_2 α -Al₂O₃ BA C_2BA_4 1200 545 31 377 4 1300 12 314 24 23 219 1400 42 360 217 197 51 1500 60 741 353 57 _ _ 50 % CA₂, 1100 26 600 29 358 50 % C2BA4 137 95 639 1300 _ 615 32 1500 253 88 146 245 32 40 % C₂BA₄, 40 % CA₂, 1300 191 89-433 26 116 22 _ 20 % ssca-ba 1500 327 116 143-217 13 51 50 % C2BA4, 30 % CA2, 178 45 1300 78 - 494107 125 _ 1500 437 206-365 60 $20 \% ss_{CA-BA}$ 102 91

Таблица 2. Минеральный состав цементов, синтезированных из соединений C₂BA₄, CA₂-C₂BA₄ и CA₂-C₂BA₄-ss_{CA-BA} и термообработанных при 1100-1500 °С в течение 2 ч

свойств. Для исследования механизма гидратации изучали химическую активность минеральных составляющих и природу полученных гидросоединений. Получена информация о степени гидратации соединений, обнаруженных в изученных подсистемах, при исследовании методом рентгеновской дифракции. При исследовании гидратированных образцов в разные промежутки времени особое внимание было уделено полученным гидросоединениям, особенно алюминатным гидратам оксида бария.

В табл. З представлены кристаллические фазы, соответствующие составам C₂BA₄, C₂BA₄– CA₂ и тройной подсистемы C₂BA₄–CA₂–ss_{CA-BA}, которые были обнаружены в ходе исследования на рентгеновском дифрактометре, а также интенсивность линий рентгеновской дифракции, характерных для этих фаз (безводных и гидратированных).

Твердые растворы ss_{CA-BA} (см. рис. 3) демонстрируют частичный изоморфизм. В их составе имеются два соединения (two limit terms): одно содержит больше СА (обозначено CA_{SS1}, см. табл. 3), а другое содержит меньше СА, но больше ВА, чем первое соединение (обозначено CA_{SS2}, см. табл. 3). Следовательно, линии рентгеновской дифракции максимальной интенсивности исследуемых твердых растворов имеют два пика, которые соответствуют этим двум соединениям (these two terms).

В табл. 4 приведена степень гидратации компонентов синтезированных цементов. В системе CA₂– C₂BA₄ после 24 ч гидратации ВА полностью гидратировался. В течение того же промежутка времени другие компоненты имели такую же степень гидратации, за исключением СА, гидратация которого составила 34,3 %. Такое же поведение соединения СА описывает С. Мохмел (S. Mohmel) [22], который акцентирует внимание на том, что в системе СА-СА₂ происходит более медленная гидратация СА, чем в СА₂. Медленную гидратацию СА можно объяснить только образованием на границе между негидратированным и гидратированным СА толстого слоя, менее проницаемого для водного раствора. Когда ВА полностью гидратируется, гидратация С₂ВА₄ заканчивается. Это можно объяснить большим количеством теплоты, выделяемой в ходе гидратации ВА (ВА в присутствии воды является высоко химически активным соединением [23, 24]). Следует учитывать, что гидратация С₂ВА₄ зависит от присутствия соединения ВА.

Что касается соединения C₂BA₄, то наблюдается увеличение степени его гидратации благодаря другим активным компонентам. Подтверждается утверждение о гидратации СА в смеси с другими соединениями.

При сравнении степени гидратации СА в сочетании с другими компонентами при различных температурах (СА₂-С₂ВА₄ и С₂ВА₄) (см. табл. 4) видно, что разница в гидратационном поведении СА зависит от применяемой температуры спекания. Следовательно, при высоких температурах в составе, в котором обнаруживается СА в качестве нерав-

	Томпоротиро	Продолжитоли ности	Число импульсов линий рентгеновской дифракции с максимальной интенсивностью										
Состав синте	синтеза, °С	гидратации, ч	C ₂ BA ₄	CA ₂	BA	SS _{CA-BA} (CA _{ss1} –CA _{ss2})	CA						
C ₂ BA ₄	1400	0	42	51	360	_	217						
		6	24	9	50	_	180						
		12	8	5	22	-	171						
		24	8	5	22	_	130						
		72	4	0	20	_	91						
		168	4	0	7	-	91						
50 % CA ₂ ,	1500	0	253	88	146	-	245						
50 % C ₂ BA ₄		12	98	35	16	-	209						
		24	83	30	6	-	161						
		72	83	28	0	-	148						
		168	82	24	0	-	148						
40 % C ₂ BA ₄ ,	1500	0	327	116	13	143-217	-						
40 % CA ₂ ,		3	179	77	0	79-132	-						
20 % ss _{ca-ba}		6	173	77	0	69-114	-						
		24	173	67	0	66-94	-						
		72	156	53	0	58-49	-						
		168	140	53	0	50-37	-						
50 % C ₂ BA ₄ ,	1500	0	437	102	91	206-365	-						
30 % CA ₂ ,		6	194	51	6	77-116	-						
20 % ss _{ca-ba}		12	189	48	6	72-116	-						
		24	164	39	3	66-116	-						
		168	122	36	0	54-58	-						
50 % C ₂ BA ₄ ,	1300	0	178	125	107	78-394	-						
30 % CA ₂ ,		6	83	73	10	33-163	-						
20 % ss _{ca-ba}		24	78	73	9	33-150	-						
		72	69	59	0	26-123	-						
		168	68	49	0	26-123	_						

Таблица 3. Линии рентгеновской дифракции с максимальной интенсивностью, соответствующие связкам из соединений C₂BA₄, C₂BA₄–CA₂ и C₂BA₄–CA₂–ss_{CA-BA}

Состав	Температура	Число импульсов линии рентгеновской	Продолжитель-	Степень гидратации, %, компонента синтезированного цемента									
рованной связки	синтеза, °С	дифракции с максимальной интенсивностью	ность гидратации, ч	C_2BA_4	CA ₂	BA	SS _{CA-BA} (CA _{ss1} –CA _{ss2})	CA					
C_2BA_4	1400	$C_2BA_4 \rightarrow 42$	6	42,9	82,35	86,1	_	17,1					
		$CA_2 \rightarrow 51$	12	80,9	90,2	93,9	_	21,2					
		$BA \rightarrow 360$	24	80,9	90,2	93,9	_	40,1					
		$CA \rightarrow 217$	72	90,5	100,0	94,4	_	58,1					
			168	90,5	100,0	98,1	_	58,1					
50 % CA ₂ ,	1500	$CA_2 \rightarrow 88$	12	61,3	60,2	89	_	14,7					
50 % C ₂ BA ₄		$C_2BA_4 \rightarrow 253$	24	67,2	65,9	100	-	34,3					
		$CA \rightarrow 245$	72	67,2	68,2	100	_	39,6					
		$BA \rightarrow 146$	168	67,6	72,2	100	_	39,6					
50 % C ₂ BA ₄ ,	1300	$CA_2 \rightarrow 125$	6	53,4	41,6	90,65	57,7–58,6	-					
30 % CA ₂ ,		$C_2BA_4 \rightarrow 178$	24	56,2	42,4	91,6	59,0-61,9	-					
$20 \% ss_{CA-BA}$		$CA_{SS1}CA_{SS2} \rightarrow 78394$	72	61,2	52,8	100,0	66,7–68,7	-					
		$BA \rightarrow 107$	168	61,8	60,8	100,0	66,7-68,7	-					
50 % C ₂ BA ₄ ,	1500	$CA_2 \rightarrow 102$	6	55,6	50,0	93,4	62,6-68,2	-					
30 % CA ₂ ,		$C_2BA_4 \rightarrow 437$	24	56,8	52,9	93,4	65,0-68,2	-					
$20 \% ss_{CA-BA}$		$CA_{SS1}CA_{SS2} \rightarrow 206365$	72	62,5	61,8	96,7	68,0-68,2	-					
		$BA \rightarrow 91$	168	72,1	64,7	100,0	73,8–84,1	-					
40 % C ₂ BA ₄ ,	1500	$CA_2 \rightarrow 116$	3	45,3	33,6	100	44,8–39,2	-					
40 % CA ₂ ,		$C_2BA_4 \rightarrow 327$	6	47,1	34,5	100	51,7–47,5	-					
20 % ssca-ba		$CA_{SS1}CA_{SS2} \rightarrow 143217$	24	47,1	42,2	100	53,8–56,7	-					
		$BA \rightarrow 13$	72	52,3	53,3	100	59,4–77,4	-					
			168	57,2	55,2	100	65,0-82,9	-					

Таблица 4. Степень гидратации компонентов синтезированных из соединений цементов C₂BA₄, C₂BA₄–CA₂ и C₂BA₄–CA₂-SS_{CA-RA}

новесного продукта из-за механизма образования C₂BA₄ (CA₂ + CA + BA ≓ C₂BA₄), он может быть более уплотненным, чем CA₂. То есть химическая активность CA меньше, чем у CA₂.

В течение 3 сут наблюдается постоянное увеличение степени гидратации всех компонентов состава 50 % C₂BA₄, 30 % CA₂, 20 % ss_{CA-BA}, термообработанного при 1300 °C, причем ВА полностью гидратируется. По истечении этого промежутка времени степень гидратации C₂BA₄ и соединений ss_{CA-BA} не меняется. Таким образом, можно утверждать, что гидратация зависит от присутствия в системе ВА и выделенной в ходе гидратации теплоты [23, 24]. Даже через 7 сут наблюдается повышенный уровень гидратации CA₂, что не зависит от других соединений системы. Даже по истечении 6 ч и даже после 24 ч степень гидратации CA₂ заметно ниже, чем у остальных компонентов синтезированной связки. В том же самом составе, термообработанном при 1500 °C, наблюдается высокая степень гидратации всех соединений при более короткой продолжительности гидратации (6 ч). Это следствие теплоты гидратации, генерируемой соединением ВА, степень гидратации которого составляет 93,4 %. При полной гидратации ВА остальные компоненты гидратируются медленно, особенно СА₂.

В составе 40 % C_2BA_4 , 40 % CA_2 , 20 % ss_{CA-BA} , термообработанном при 1500 °С (см. табл. 4), гидратация C_2BA_4 , ss_{CA-BA} и CA_2 сначала зависит от присутствия BA, но в меньшей степени, так как его количество меньше, чем в составе 50 % C_2BA_4 , 30 % CA_2 , 20 % ss_{CA-BA} . Во всех соединениях, содержащих ss_{CA-BA} , степень гидратации C_2BA_4 и CA_2 почти одинакова — от коротких промежутков времени до 1 сут.

Экспериментальные данные, полученные с помощью метода рентгеновской дифракции по вопросу получения гидроалюминатов бария, представлены в табл. 5. Через 7 сут гидратации

Таблица 5. Обнаруженные гидроалюминаты оксида бария после гидратации исследуемых составов цемента

Состав	Температура	Число импульсов линии рентгеновской дифракции с максимальной интенсивностью									
	синтеза, С	BAH ₄	α-Ba(OH) ₂	B_2AH_5							
C ₂ BA ₄	1400	24	12	13							
50 % CA ₂ , 50 % C ₂ BA ₄	1500	41	4	12							
50 % C ₂ BA ₄ , 30 % CA ₂ ,	1300	61	6	9							
20 % ss _{ca-ba}											
50 % C ₂ BA ₄ , 30 % CA ₂ ,	1500	66	5	8							
20 % ss _{ca-ba}											
40 % C ₂ BA ₄ , 40 % CA ₂ ,	1500	60	11	14							
20 % ss _{ca-ba}											

основным гидратированным кристаллическим соединением стало соединение ВАН₄. Его характерные отличия: возможная трансформация менее основных гидроалюминатов в более основные гидроалюминаты в результате присутствия Ва(OH)₂ и образования B₂AH₅. На это указывают и другие исследователи [25].

Взаимосвязь между составами исследованных цементов и свойствами полученных бетонов

Исходя из полученных составов цементов можно прогнозировать их связующие свойства в зависимости от условий их синтеза, а также механизма реакций гидратации [26]. Особое внимание при исследовании было уделено физикомеханическим свойствам бетонов, изготовленных из этих цементов.

Характеристики бетонов, изготовленных из 15 % цемента и 85 % заполнителя, приведены в табл. 6, отношение вода / цемент составляет 0,5. Химический состав заполнителя, мас. %: Al_2O_3 99,50, SiO_2 0,04, Fe_2O_3 0,02, Na_2O 0,30, CaO 0,05. Зерновой состав заполнителя, мас. %: фракции мельче 0,212 12, 0,212–0,60 13, 0,60–0,85 3, 0,85–1,68 24, 1,68–3,35 48.

Из табл. 6 видно, что оба состава цемента (из С₂ВА₄, термообработанного при 1400 °С в течение 2 ч, и из 50 % CA₂ – 50 % C₂BA₄, термообработанного при 1500 °С в течение 2 ч) обладают почти одинаковыми показателями плотности и механической прочности. Хотя эти составы различаются, компоненты, полученные после термообработки, одинаковы; разница только в их количестве (см. табл. 3). Через 7 и 28 сут у состава C2BA4 наблюдался немного более высокий предел прочности при сжатии, чем у состава 50 % CA₂ – 50 % C₂BA₄ (см. табл. 3 и 6). Неравновесная термообработка первого состава цемента (в течение 2 ч при 1400 °C) позволяет получить химически активные соединения в ущерб менее химически активному соединению С₂ВА₄. Во втором составе благодаря термообработке возможно образование большого количества С₂ВА₄ при высокой температуре (1500 °C).

Из табл. 6 видно, что в составах $C_2BA_4-CA_2-ss_{CA-BA}$ не наблюдается существенных различий между кажущейся плотностью отвердевших в течение 7 сут бетонных образцов и синтезированных составов, термообработанных при такой же температуре (1500 °C, составы 4 и 5). Выделен состав 3, термообработанный при 1300 °C, с более высокой плотностью, чем у состава, синтезированного при 1500 °C.

В составах 3 и 4 важную роль в формировании свойств связки играет температура синтеза, так как она заметно влияет на минеральный состав цемента. Так, при повышении температуры синтеза от 1300 до 1500 °С расход соединений СА₂ и ВА при реакции образования C₂BA₄ положительно влияет на свойства связки. Количество соеди-

	Кажишаяся	IIJIOTHOCTE, KI/M ³	2462		2143			2500				2463				2472			
OB	и. МПа, через	28 cyr	11,3		10,8			14,3				20,1				23,8			
емых цемент	ости при сжати	7 сут	8,3		7,7			10,9				18,44				20,1			
нием исследу	Предел прочн	3 сут	6,13		6,24			7,2				11,04				12,7			
их с использован		Срок схватывания	4 ч 40 мин		2 ч 10 мин			Ъ 7				6 ч 30 мин				23 мин			
онов, полученнь	Окончательный	срок схватывания	5 ч 28 мин		3 ч 15 мин			8 ч 22 мин				8 ч 30 мин				1 ч			
актеристики бет	Первоначальный	срок схватывания	48 мин		1 ч 5 мин			1 ч 22 мин				2 ч				37 мин			
вязующие хар	Минепальные	составляющие	$C_2 BA_4$, CA_2 ,	BA, CA	CA_2 , C_2BA_4 ,	BA, CA		CA_2 , C_2BA_4 ,	BA, CAss1, CAss2			CA_2 , C_2BA_4 ,	BA, CAss1, CAss2			CA_2 , C_2BA_4 ,	BA, CAss1, CAss2		
6. Физические и с	Coctab	(температура синтеза, °C)	C_2BA_4	(1400)	$50 \% CA_2$,	$50 \% C_2 BA_4$	(1500)	$50 \% C_2 BA_4$,	$30 \% CA_2$,	$20 \% ss_{ca-ba}$	(1300)	$50 \% C_2 BA_4$,	$30 \% CA_2$,	$20 \% ss_{ca-ba}$	(1500)	$40 \% C_2 BA_4$,	$40 \% \text{ CA}_2$,	$20 \% ss_{ca-ba}$	(1500)
аблица	Номер	COCTABA	1		2			с				4				2			

нений CA₂ и BA в составе 3 (1300 °C) больше, чем в составе 4 (1500 °C, см. табл. 3). Вероятно, это объясняется более высокой химической активностью этих соединений (см. табл. 4). Соединение ВА почти полностью гидратируется всего лишь через 6 ч хранения. У соединения CA₂ через 6 ч наблюдается степень гидратации 53,4 %. Эти соединения вызывают в системе напряжения в результате выделения теплоты гидратации.

Если в тех же системах поддерживать постоянную температуру и менять только состав (40 % C₂BA₄, 40 % CA₂, 20 % ss_{CA-BA}), можно получить более высокие показатели механической прочности. Следует отметить, что механическая прочность составов 3–5 возрастает по мере уменьшения количества BA (см. табл. 3, 4 и 6). В составах 1 и 2 не наблюдается различий в сроке схватывания при повышении температуры синтеза, что наблюдается у состава 5.

ЗАКЛЮЧЕНИЕ

По результатам проведенного исследования можно сделать следующие выводы:

Библиографический список

1. *Bensted, J.* / Zement-Kalk-Gips. — 1993. — Vol. 46, № 9. — P. 560–566.

2. **Buttler F. G., Taylor H. F. W.** / J. Chem. Soc. — 1958. — P. 2103–2110.

3. Scrivener K. L., Taylor H. F. W. Microstructural development in pastes of a calcium aluminate cement. In Calcium Aluminate Cements (Mangabhai RJ (ed.)), Chapman and Hall, London, UK, 1990. — P. 41–51.

4. *Guirado F., Gali S., Chinchon J. S.* / Cem. & Concr. Res. — 1998. — Vol. 28. — P. 381-390.

5. *Perez M., Vazquez T., Trivino F.* / Cem & Concr. Res. — 1983. — Vol. 13. — P. 759–770.

6. Klaus S. R., Neubauer J., Goetz-Neunhoeffer F. / Cem. & Concr. Res. — 2013. — Vol. 43. — P. 62–69.

7. **Teoreanu I.** Fundamentals of inorganic binder technology (in Romanian) (Ed. Didactica si Pedagogica RA, Bucharest), 1993.

8. **Segal E., Fătu D.** Introduction to the non-isothermal kinetics (Academiei Publishing House, Bucharest), 1983.

9. *Teoreanu I., Ciocea N.* Binders, masses and concrete refractory (in Romanian) (Ed. Tehnica, Bucharest), 1977.

10. *Amareanu M.* Hydration and hardening of some untraditional aluminous binders. Kinetic studies (PhD Thesis, University POLITEHNICA of Bucharest), 2006.

11. *Smith A., Chotard T., Gimet-Breart N., Fargeot D.* / J. Eur. Ceram. Soc. — 2002. — Vol. 22, № 12. — P. 1947–1958.

12. Tsakiridis P. E., Samouhos M., Peppas A., Katsiotis N. S., Velissariou D., Katsiotis M. S., Beazi M. / Constr. and Build Materials. 2016. — Vol. 126. — P. 673–681.

13. *Soro J., Smith A., Gault C.* / J. Eur. Ceram. Soc. — 2007. — Vol. 27, № 2/3. — P. 1469–1474.

14. *Chotard T., Rotureau D., Smith A.* / J. Eur. Ceram. Soc. — 2005. — Vol. 25, № 16. — P. 3523–3531.

1. По категории факторов обработки можно утверждать, что для упрочнения цемента решающим фактором является термообработка, которая происходит с достижением химического равновесия или без него. Термообработка необходима для получения фазового состава с высоким содержанием минеральных фаз, обладающего высокой механической прочностью.

2. При более низких температурах в сторону равновесной температуры системы, к которой они принадлежат, спеченные связки демонстрируют более высокие показатели предела прочности при сжатии благодаря неравновесным соединениям, большему количеству основных соединений и выделяемой теплоты гидратации. Это дает возможность активизировать менее химически активные компоненты состава.

3. Поскольку в результате гидратации образуется теплота, скорость повышения температуры связки снижается, когда температура обжига достигает равновесной температуры системы.

4. Во всех изученных составах наблюдается значительная механическая прочность независимо от их минерального состава.

15. *El Hafiane Y., Smith A., Chartier T., Abouliatim Y., Nibou L., Bonnet J. P.* / J. Eur. Ceram. Soc. — 2012. — Vol. 32, № 10. — P. 2103–2111.

16. *El Hafiane Y., Smith A., Bonnet J. P., Tanouti B.* / J. Eur. Ceram. Soc. — 2005. — Vol. 25, № 7. — P. 1143–1147.

17. *Guirado F., Galí S., Chinchón S.* / Cem. & Concr. Res. — 2000. — Vol. 30, № 7. — P. 1023–1029.

18. *Ufimtsev V. M., Gulyaev A., Kamenskikh V. A.* / Refract. Ind. Ceram. — 2012. — Vol. 53, № 4. — P. 35–38.

19. **Collepardi M., Monosi S., Piccioli P.** / Cem. & Concr. Res. — 1995. — Vol. 25, № 5. — P. 961–968.

20. Le-Bihan T., Georgin J. F., Michel M., Ambroise J., Morestin F. / Cem. & Concr. Res. — 2012. — Vol. 42, № 8. — P. 1055–1065.

21. *Ciocea N.* Refractory cements (PhD thesis, Polytechnic Institute of Bucharest), 1976.

22. Mohmel S., Geßner W., Muller D. The behaviour of CA/CA_2 cements during hydration and thermal treatment, paper presented at UNITECR 97, New Orleans, Louisiana USA, 1997.

23. *Teoreanu I., Folea A., Amareanu M.* / Rev. Materiale de constructii. — 1998. — № 1. — P. 47–51.

24. **Teoreanu I., Amareanu M., Folea A.** Kinetics approaches to the hidration of highly refractory calcium barium cements, paper presented at The Sixth Conference and Exhibition of the European Ceramic Society, Brighton Conference Centre, UK, 1999.

25. *Carlson E. T., Berman H. A.* / J. Res. Nat. Bureau of Standard. — 1960. — Vol. 64, № 4. — P. 333–341.

26. *Kırca Ö., Özgür Y. I., Tokyay M.* / Cement & Concrete Composites. — 2013. — Vol. 35. — P. 163–170. ■

Получено 14.12.17 © М. Амареану, Л. Мелита, 2018 г.

Пер. — **С. Н. Клявлина** (ОАО «Комбинат «Магнезит»)

40